Liebe/r Veranstalter/in, bitte denken Sie, aus Gründen des Datenschutzes, daran, dass die von Ihnen für die jeweilige Veranstaltung nicht mehr benötigten Teilnehmerlisten, sonstige Dokumente etc. gelöscht werden müssen. Vielen Dank.

12.–14. Nov. 2025
SoN
Europe/Berlin Zeitzone

Interpretable AI for scientific discovery

13.11.2025, 15:30
30m
SoN

SoN

Talk Plenary

Sprecher

Fabian Ruehle (Northeastern University)

Beschreibung

While machine learning techniques are incredibly powerful, they are also notoriously difficult to interpret. This poses a problem fore research areas such as pure mathematics or certain fields in theoretical physics, which require rigor and understanding, while ML algorithms are often stochastic and black box. I will first give a brief overview of ML techniques that lead to rigorous, exact results. After that, I will focus on one technique called symbolic regression. I will explain how Kolmogorov-Arnold networks can be paired with genetic algorithms to obtain symbolic formulae instead of numeric expressions.

Präsentationsmaterialien