

JupyterHub

Interaktive webbasierte Datenanalyse-, Visualisierungs- und Entwicklungsplatform

Forschungsdaten

- Forschungsdaten können in der Regel einfach erzeugt werden
 - Hardware (Messgeräte, Mikroskope, Kameras, ...)
 - HPC (Simulationen)
 - Händisch (z.B. Tabellenkalkulation)
- Verschiedene Formate
 - Binär (HDF5, diverse Bildformate, herstellerspezifische Formate, selbsterfundene Formate, ...)
 - Text (z.B. CSV)
 - Datenbank

Speicherorte für Forschungsdaten

- Lokaler Rechner
 - Kleine bis mittelgroße Datenmengen
- Sciebo
 - Kleine bis mittelgroße Datenmengen
- Palma
 - Beliebig große Datenmengen
- WWU Cloud
 - Beliebig große Datenmengen

Daten können je nach Größe auch redundant auf mehreren Systemen liegen

Auswertung der Daten

- Nicht-Interaktiv
 - Analyseprogramme und Scripts
 - Lokaler Rechner für kleine Datenmengen
 - HPC für große Datenmengen
- Interaktiv
 - Spezialsoftware
 - Gnuplot, Excel
 - Jupyter

Interaktive Aufbereitung meist auch nach Nicht-Interaktiven Analyse nötig!

Jupyter Notebooks

- Ursprünglich entwickelt zur interaktiven Datenanalyse in **Ju**lia, **Pyt**hon und **R**
- Notebook ist Mischung aus Text, Code und Daten-Visualisierung
- Wird traditionell auf lokalem Rechner gestartet
- Mittlerweile viele Kernel für verschiedene Programmiersprachen verfügbar
- Zahlreiche Extensions zur Visualisierung verfügbar
- Problem: Wie komme ich an meine Forschungsdaten?
 - Kopieren auf lokalen Rechner wegen Datengröße nicht immer möglich
 - Teilweise umständlicher Workflow
 - Remote-Zugriff auf Notebook möglich

JupyterHub

- Webanwendung zum Starten von Jupyter-Sessions
- Sessions laufen in Kubernetes-Cluster "zivkube" auf WWU Cloud als "Pods"
- Anzahl der CPUs und RAM auswählbar
 - Limits auf Basis von Benutzergruppen (Studierende, Mitarbeiter)
 - Gruppen von Studierenden werden auf Anfrage zugelassen (aktuell noch keine)
- Besonderheit: Benutzer starten Session mit korrekter UID, GID
 - Zugriff auf Palma (/home und /scratch) und Benutzerfreigaben in WWU Cloud möglich
 - Zugriff auf JupyterHub Home-Verzeichnis: \\wwu.de\ddfs\Cloud\zivkube\jupyterhub_homes

Jupyter Images

- Jupyter Sessions werden durch Docker-Images erzeugt
- Vom ZIV bereitgestellte Jupyter-Images:
 - eScience: Fokus auf wissenschaftliche Datenanalyse und Visualisierung
 - Development: Fokus auf Softwareentwicklung in verschiedenen Programmiersprachen
 - Installation von Bibliotheken und Anwendungen auf Anfrage möglich
- Mitarbeiter dürfen auch beliebige Images starten, aber ohne Datenzugriff auf Palma/WWU Cloud

JupyterLab

- Weiterentwicklung "JupyterLab" als interaktive Entwicklungsumgebung für Notebooks
 - Tabs für Launcher, Notebooks und Terminals
 - Sidebar für Filetree, Git und Sessions
- Geschrieben in TypeScript
- Erweiterbar durch JupyterLab-Extensions
 - Datenvisualisierung für Notebooks
 - Webanwendungen
 - X11-Anwendungen (mit noVNC als Webanwendung)
 - HPC Jobübersicht

Web-Anwendungen

- Visual Studio Code
 - Web-Version der IDE zur Softwareentwicklung
 - Integrierter Python, Java-Debugger und C++-Debugger
- R Studio
 - IDE für Softwareentwicklung in R
- Shiny Server
 - Anzeige und Testen von in R geschriebenen Shiny Apps

X11-Anwendungen

- Integration von X11-Anwendungen über noVNC
- Beliebige X11-Anwendungen im Browser verfügbar
- Blender
- Mathematica, Matlab
- Voreen, Paraview, VMD
- Grace
- Starten von eigenen X11-Anwendungen möglich!

Serverseitige GPU-Unterstützung zur Datenvisualisierung in Planung

Notebook Kernel und Programmiersprachen

- Python, R, Julia
- Gnuplot
- SageMath, Octave, Scilab, Mathematica
- C/C++ mit GCC, Clang und Xeus-Kernel
- Go
- Java
- Scheme
- (Haskell)
- Clojure, Groovy, Kotlin, Scala
- SQL

Anwendungen und Bibliotheken

- Machine-Learning: Scikit-Learn, Keras, Torch, Heat
- Diverse Python Mathematik-Pakete (numpy, scipy, sympy ...)
- Root
- Gromacs
- Dask
 - Starten von Worker-Tasks auf Palma möglich
 - Transparente Integration für scikit-learn
 - Langlebige Tensorflow-Tasks auf Palma

Zielgruppe

- Mitarbeiter (insbesondere Wissenschaftliche Mitarbeiter, Doktoranden)
 - Mehr CPUs/RAM
 - GPU-Unterstützung (in Arbeit, zunächst nur Hardware-Rendering für X11-Anwendungen)
 - Custom Images
- Studierende
 - Limitierte Auswahl an CPU/RAM
 - Keine GPU-Unterstützung
 - Keine Custom Images
 - Vorerst nur Freigabe von Gruppen auf Anfrage der Fachbereiche

Support und Knowledgebase

Mattermost (Chat): Team WWU, Kanal JupyterHub

Confluence-Integration:

- Upload von Notebooks nach Confluence möglich
- Aufbau einer Knowledgebase
- Alle Mitarbeiter können Schreibzugriff bekommen
- https://zivconfluence.uni-muenster.de/display/jupyterhub/

Support seitens ZIV nur für technische Probleme und Softwareinstallation

Keine Programmierberatung außerhalb vom KB-Artikeln möglich

Vielen Dank für die Aufmerksamkeit!

https://jupyterhub.wwu.de