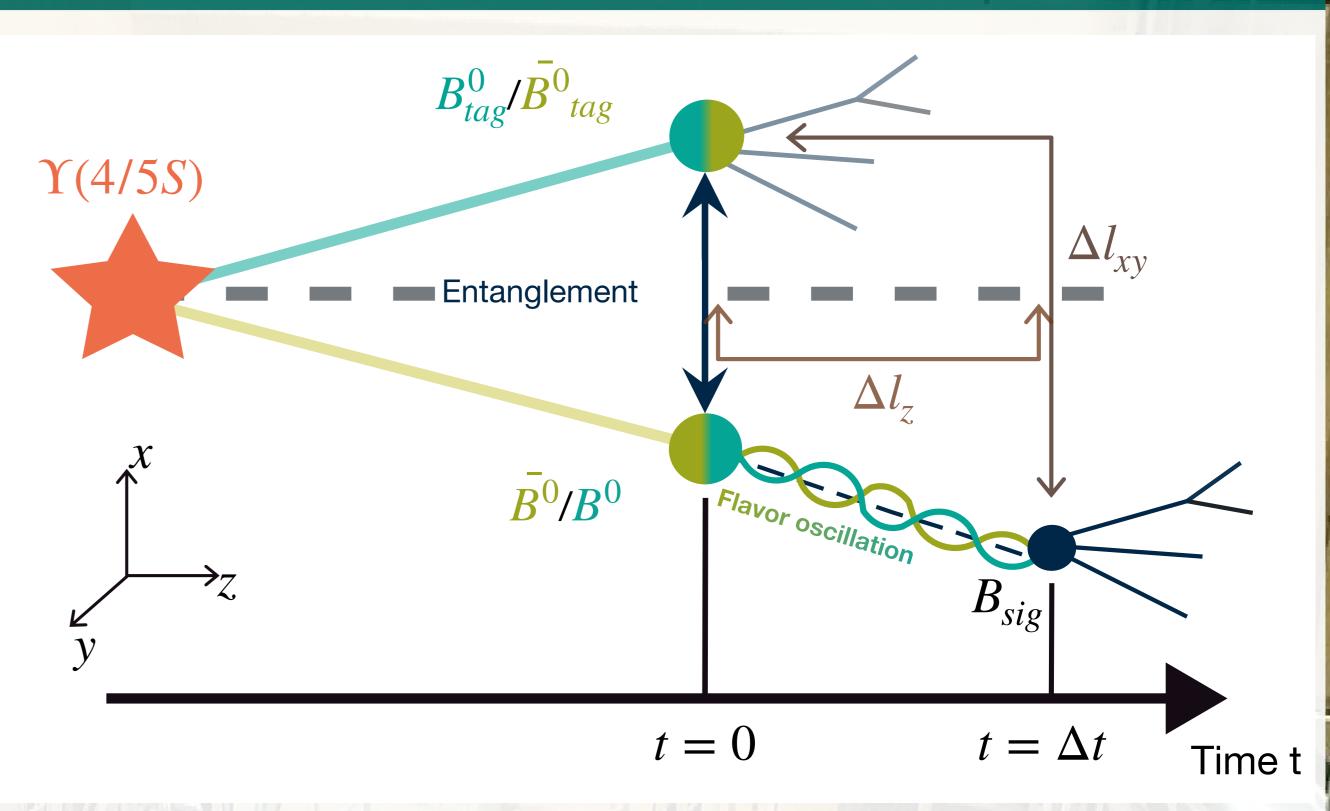


# Quantum Entanglement at the $\Upsilon(5S)$ at Belle II



Hans-Günther Moser, Louise Beriet, Vanessa Geier, Max Hattenbach, and Adrian Liese


MPP Belle II Group

### What is Quantum Entanglement?

- Quantum entanglement is a fundamental property in quantum mechanics.
- ► It describes a phenomenon where two or more particles become correlated.
- The state of one particle cannot be described without the state of the other, even when separated by large distances.
- ► A typical example is the entangled Bell state for two particles with possible states up and down. The wave function for the Bell state is:  $|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle\right)$ .

## **Entanglement and Particle Physics at Belle**

- $ightharpoonup \Upsilon(4S)$  decay to  $B^0B^0$  are supposed to be **entangled state**. This means their flavor state are supposed to **oscillate** in opposite phase with each other.
- ► How certain are we that entanglement is consistently 100 %?
- $ightharpoonup \Upsilon(5S)$  offers even **richer quantum states**, leading to more scenarios of disentanglement and more measurements possible.
- ► Measurements of the **spatial separations** of the B-meson allow us to compute **time-dependent** parameters, which are directly correlated to the **quantum coherence** of the system.



Sketch of the decay of the resonance into the B-meson pair in the laboratory frame.  $\Delta l_{xy}$  is the spatial separation in the transverse plane, it is only accessible at the  $\Upsilon(5S)$ .

#### Comparing the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances

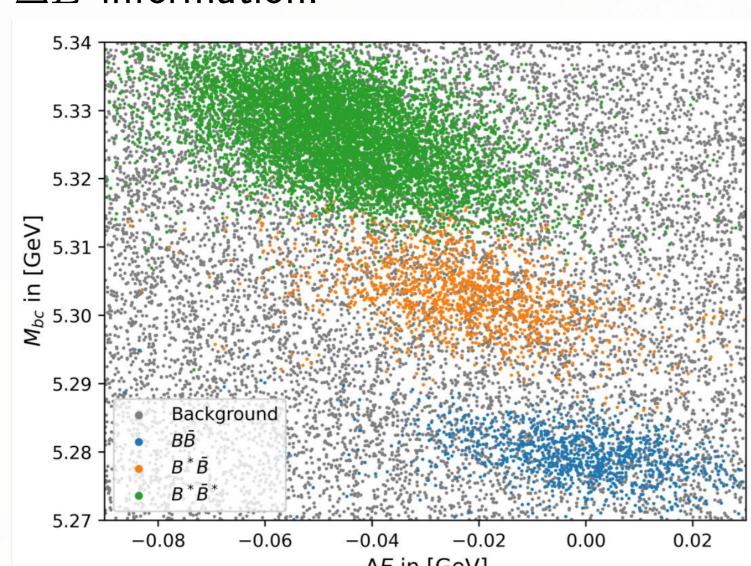
The  $\Upsilon(4S)$  decays almost exclusively into  $B^0\bar{B}^0$  pairs in a pure antisymmetric (C=-1) entangled state:

$$|\Psi_{4S}\rangle = \frac{1}{\sqrt{2}} \left( \left| B_1^0 \bar{B}_2^0 \right\rangle - \left| \bar{B}_1^0 B_2^0 \right\rangle \right)$$

- ightharpoonup This means we expect the two B mesons to be maximally entangled.
- ▶ The time evolution observable is only  $\Delta t = t_1 t_2$ .
- ➤ Previous results by Belle find that a 10 % fraction of decoherent events is still possible: need for precision measurement,
- ► The  $\Upsilon(5S)$  is more energetic, and can also decay into excited  $B^{*0}\bar{B}^{*0}$  and  $B^{*0}\bar{B}^0$  states.
- These states lead to both symmetric (C = +1) and antisymmetric (C = -1) configurations, which can mix.

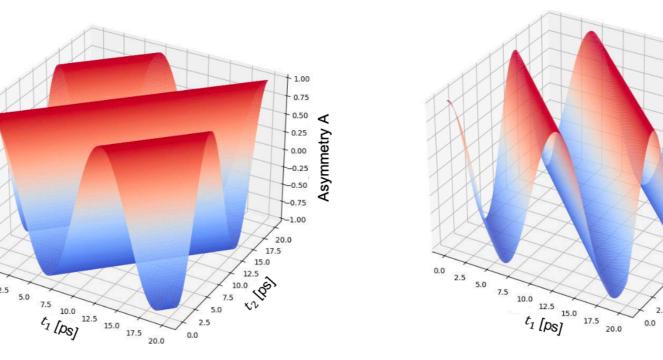
$$|\Psi_{5S}\rangle = \frac{1}{\sqrt{2}} \left( \left| B_1^0 \bar{B}_2^0 \right\rangle \pm \left| \bar{B}_1^0 B_2^0 \right\rangle \right)$$

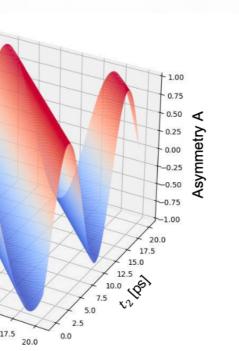
- ► The mixed sample behaves like a partially disentangled state, allowing studies of decoherence.
- The higher momentum at the  $\Upsilon(5S)$  allows independent reconstruction of  $t_1$  and  $t_2$  instead of only  $\Delta t$ .

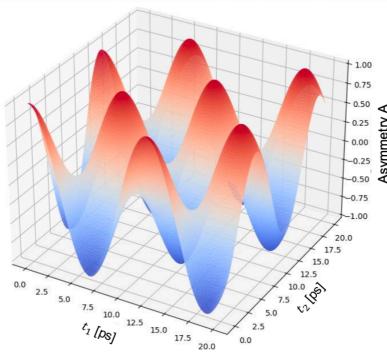

#### Analysis and theory at $\Upsilon(5S)$

#### State separation

- ▶ Decay channel reconstructed:  $B^0 \to D^{(*)-}\pi^+$ ,  $D^-\pi^+$ . Integrated luminosity on on-resonance  $\Upsilon(5S)$  L=121 fb $^{-1}$ .
- ► Need to separate between :


| Decay type                                                           | C-state |
|----------------------------------------------------------------------|---------|
| $\Upsilon(5S) \to \bar{B}^0 B^0$                                     | -1      |
| $\Upsilon(5S) \to \overline{B}{}^0 B^{0*}$ , $B^{0*} \to \gamma B^0$ | +1      |
| $\Upsilon(5S) \to B^{0*}B^{0*}$ , $B^{0*} \to \gamma B^0$            | -1      |


▶ The energy of the photon (45 MeV) is too low to be reconstructed: differentiate the channels using  $M_{bc}$  and  $\Delta E$  information.




 $M_{bc}$  against  $\Delta E$  plotted for different decay states and background (combinatorial and continuum).

# Asymmetry and disentanglement







Left: anti-symmetric, C=-1. Center: symmetric, C=+1. Right: disentangled

Antisymmetric wavefunction C=-1: Symmetric wavefunction C=+1:  $A = \cos \Delta m (t_1 - t_2)$   $A = \cos \Delta m (t_1 + t_2)$ 

The **flavor asymmetry** is defined as:  $A = \frac{P_{OF} - P_{SF}}{P_{SF} + P_{OF}}$  it quantifies the difference between observing **opposite-flavor** and **same-flavor** decays of the two B-mesons. $P_{OF}$  and  $P_{SF}$  are the probabilities for opposite-flavor and same-flavor decays, respectively

Case of disentanglement, the wavefunctions become:  $|\Psi_1(t_1,t_2)\rangle = [|B^0(t_1)\rangle \otimes |\bar{B}^0(t_2)\rangle]$   $|\Psi_2(t_1,t_2)\rangle = [|\bar{B}^0(t_1)\rangle \otimes |B^0(t_2)\rangle]$  with probability 1/2. The Asymmetry is:  $A(t_1,t_2) = \cos \Delta m t_1 \cos \Delta m t_2$ 

#### **Entanglement of formation (EOF)**

lacktriangleright Properly **disentangled states** can be created by selecting a **mixture** of  $C=\pm 1$ :

$$A_{mixed} = \cos \frac{\Delta m(t_1 + t_2)}{2} + \cos \frac{\Delta m(t_1 - t_2)}{2} = \dots = \cos(\Delta m t_1)\cos(\Delta m t_2)$$

- ► These states are indistinguishable from a genuine disentangled independent state.
  - ► Suppose the mixed state density matrix:

$$\rho = p|C_{+1}\rangle\langle C_{+1}| + (1-p)|C_{-1}\rangle\langle C_{-1}|$$

▶ One can compute the concurrence as a measure of entanglement, as a function of the mixture fraction p. For an equal mixture  $p=\frac{1}{2}$ , the system behaves as if completely disentangled.

| p                             | Concurrence $C(p)$ | $\mid$ EOF $E(p)\mid$           |
|-------------------------------|--------------------|---------------------------------|
| 0 (C=-1)                      | 1                  | $H(\frac{1}{2}) = 1$            |
| 1 (C=+1)                      | 1                  | $H(\overline{\frac{1}{2}}) = 1$ |
| $\frac{1}{2}$ (equal mixture) | 0                  | H(1) = 0                        |



Entanglement of the mixed state plotted against the mixing value p.  $\mathsf{E}=1$  is completely entangled,  $\mathsf{E}=0$  is completely disentangled.

#### Outlook

- ▶ Ongoing analysis of the decoherence fraction at the  $\Upsilon(5S)$ .
- Prospect of use of quantum state tomography to independently probe the  $B^0\bar{B}^0$  entanglement.
- Current questioning on possible CHSH measurement at  $\Upsilon(5S)$ .