Quantum Al: Toward the next revolution driven by quantum computing and Al

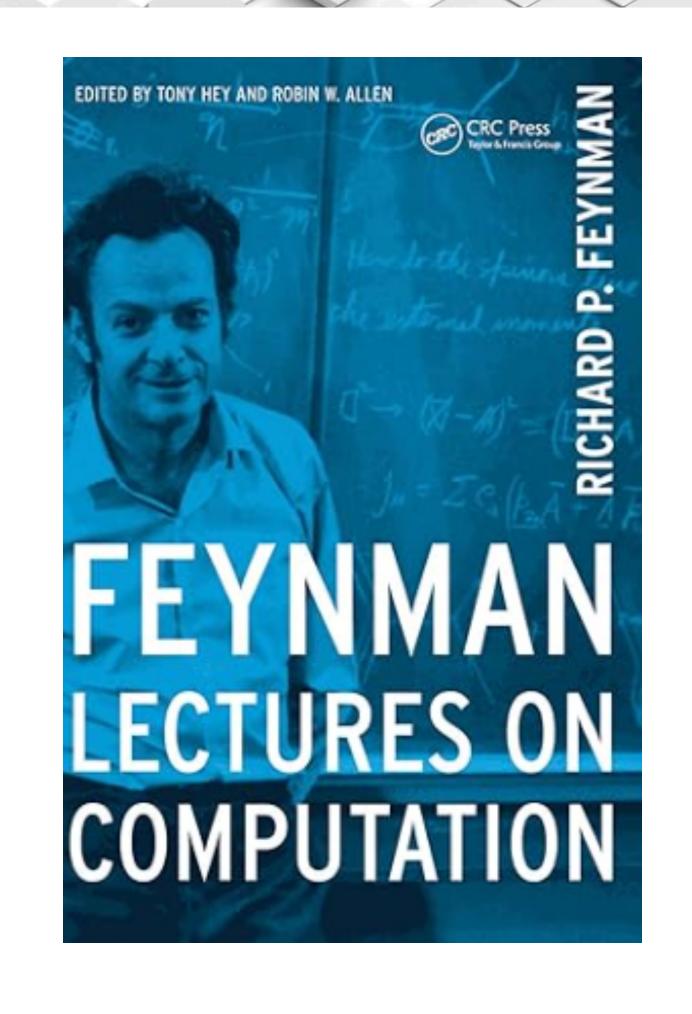
Keisuke Fujii

Professor, Graduate School of Engineering Science/ Deputy director, Center for Quantum Information and Quantum Biology The University of Osaka

Introduction

Historical link between Quantum Computing and Al

- R. Feynman, J. Hopfield, and C. Mead pioneering interdisciplinary lecture course "*The Physics of Computation*" at Caltech (1981–1984).
- In 1981, Feynman proposed quantum computers, bridging quantum physics and information theory seeking fundamental limits on computing.
- In 1982, Hopfield introduced the Hopfield network, pioneer of neural networks connecting physics and computation.



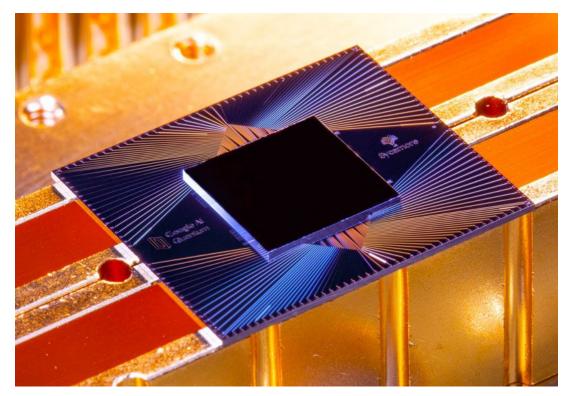
Since then, Quantum Computing and Al took separate paths

— until they met again around 2018.

We are now in the NISQ era

NISQ: Noisy Intermediate-scale Quantum technologies/computers J. Preskill "Quantum Computing in the NISQ era and beyond" Quantum 2018

- Quantum computers of over 100 qubits are now available.
- # of qubits is still too small for FTQC, i.e. error-corrected quantum computers, which typically needs 1M qubits.
- Quantum-classical hybrid algorithms are thought to be effective with shallow quantum circuits.

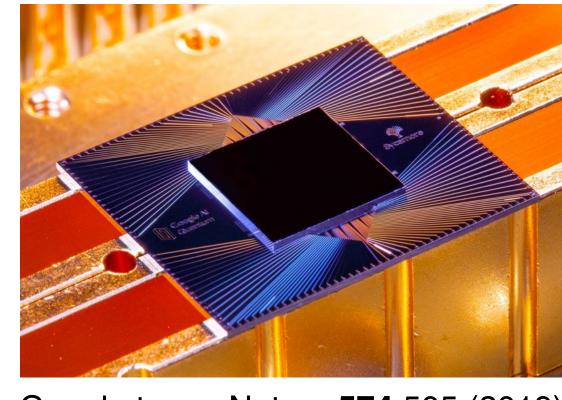


Google team, Nature **574** 505 (2019)

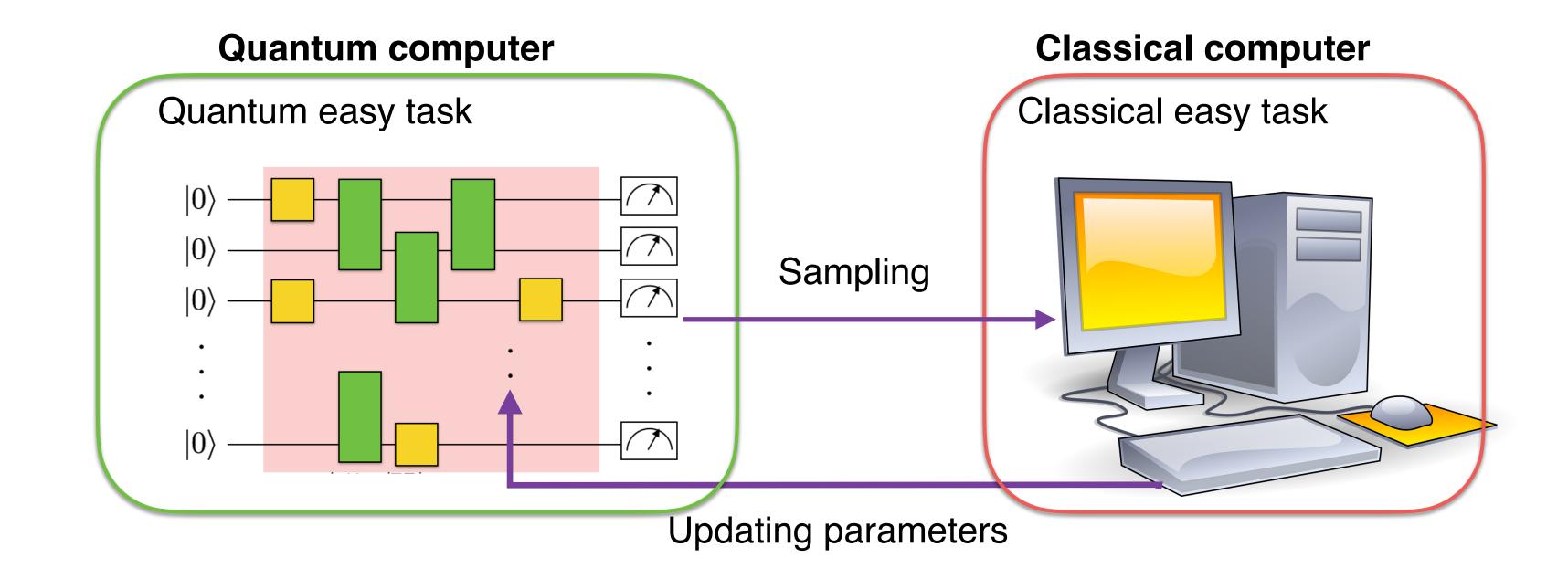
We are now in the NISQ era

NISQ: Noisy Intermediate-scale Quantum technologies/computers J. Preskill "Quantum Computing in the NISQ era and beyond" Quantum 2018

- Quantum computers of over 100 qubits are now available.
- # of qubits is still too small for FTQC, i.e. error-corrected quantum computers, which typically needs 1M qubits.
- Quantum-classical hybrid algorithms are thought to be effective with shallow quantum circuits.



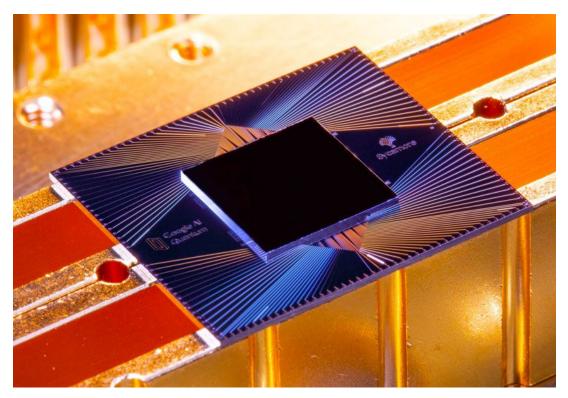
Google team, Nature **574** 505 (2019)



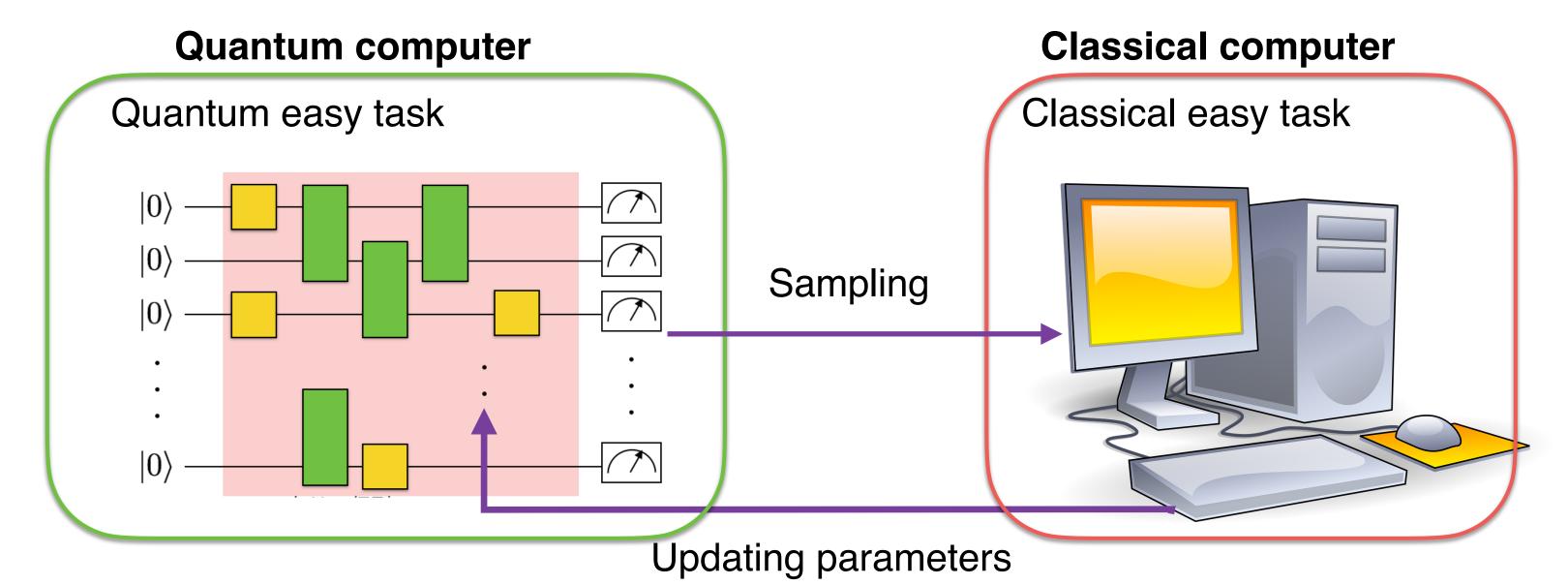
We are now in the NISQ era

NISQ: Noisy Intermediate-scale Quantum technologies/computers

- J. Preskill "Quantum Computing in the NISQ era and beyond" Quantum 2018
- Quantum computers of over 100 qubits are now available.
- # of qubits is still too small for FTQC, i.e. error-corrected quantum computers, which typically needs 1M qubits.
- Quantum-classical hybrid algorithms are thought to be effective with shallow quantum circuits.



Google team, Nature **574** 505 (2019)



Quantum Machine Learning

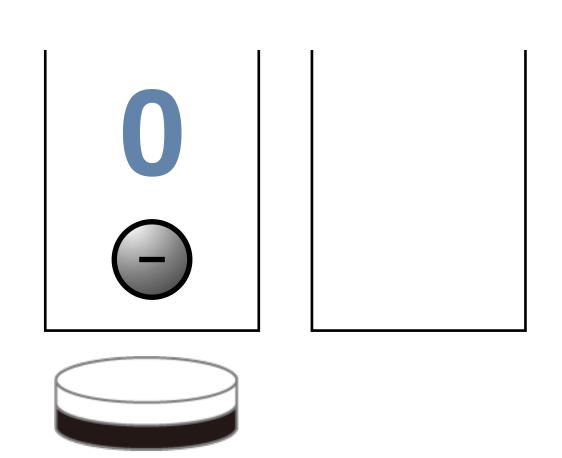
Quantum Computer for ML &

ML for Quantum Computer

How Quantum Computer and Quantum Machine Learning work

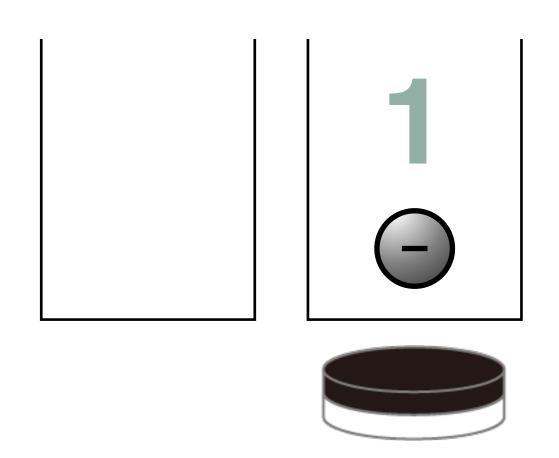
The minimum unit of information in the "classical" or "quantum" world

Classical bit



The minimum unit of information in the "classical" or "quantum" world

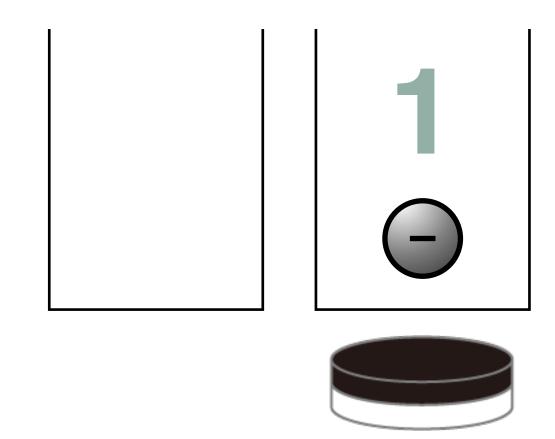
Classical bit



The minimum unit of information in the "classical" or "quantum" world

Classical bit

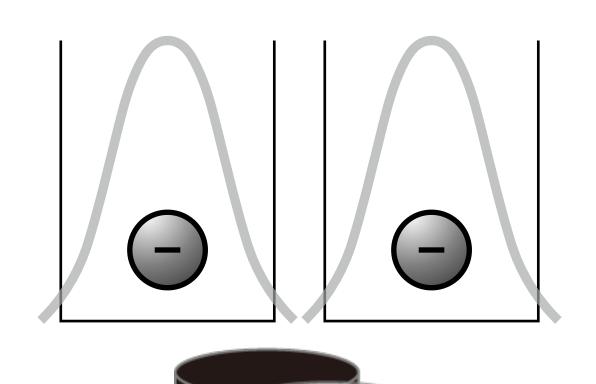
$$x \in \{0, 1\}$$



Quantum bit

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Superimposed state of 0 and 1



complex vector space

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

measurement 0 or 1?

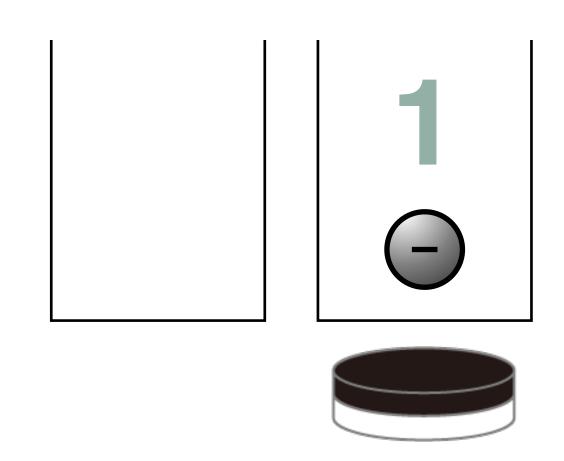
$$p_0 = |\alpha|^2$$

$$p_1 = |\beta|^2$$

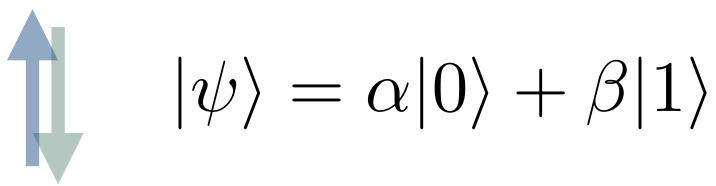
Probability is given by squared abs. of complex Amplitudes.

The minimum unit of information in the "classical" or "quantum" world

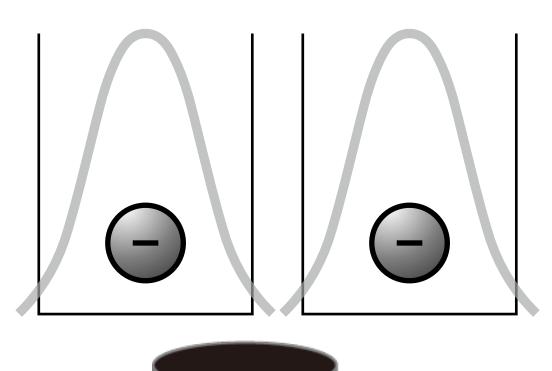
Classical bit



Quantum bit



Superimposed state of 0 and 1



Whether it is 0 or 1 has yet to be determined.

complex vector space

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

measurement 0 or 1?

$$p_0 = |\alpha|^2$$

$$p_1 = |\beta|^2$$

Probability is given by squared abs. of complex Amplitudes.

n-qubit system: a state vector
$$|\psi\rangle\in {\bf C}^{2^n}$$

$$|\psi\rangle = \begin{pmatrix} \psi_{0...0} \\ \psi_{0...1} \\ \vdots \\ \psi_{1...1} \end{pmatrix}$$

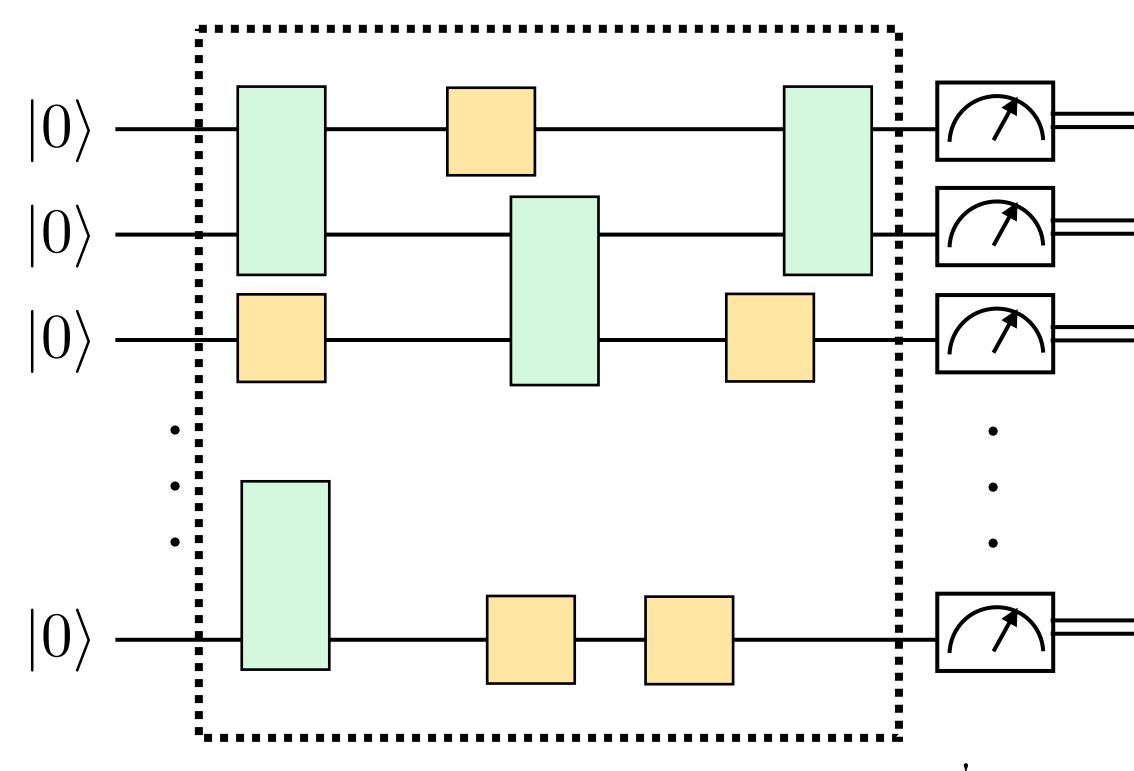
or density matrix $\rho = |\psi\rangle\langle\psi|$ (quantum analog of prob. dist.)

 $\rho_{\rm in} = |0...0\rangle\langle 0...0|$

n-qubit system: a state vector $|\psi\rangle \in \mathbb{C}^{2^n}$

$$|\psi\rangle = \begin{pmatrix} \psi_{0...0} \\ \psi_{0...1} \\ \vdots \\ \psi_{1...1} \end{pmatrix}$$

or density matrix $\rho = |\psi\rangle\langle\psi|$ (quantum analog of prob. dist.)



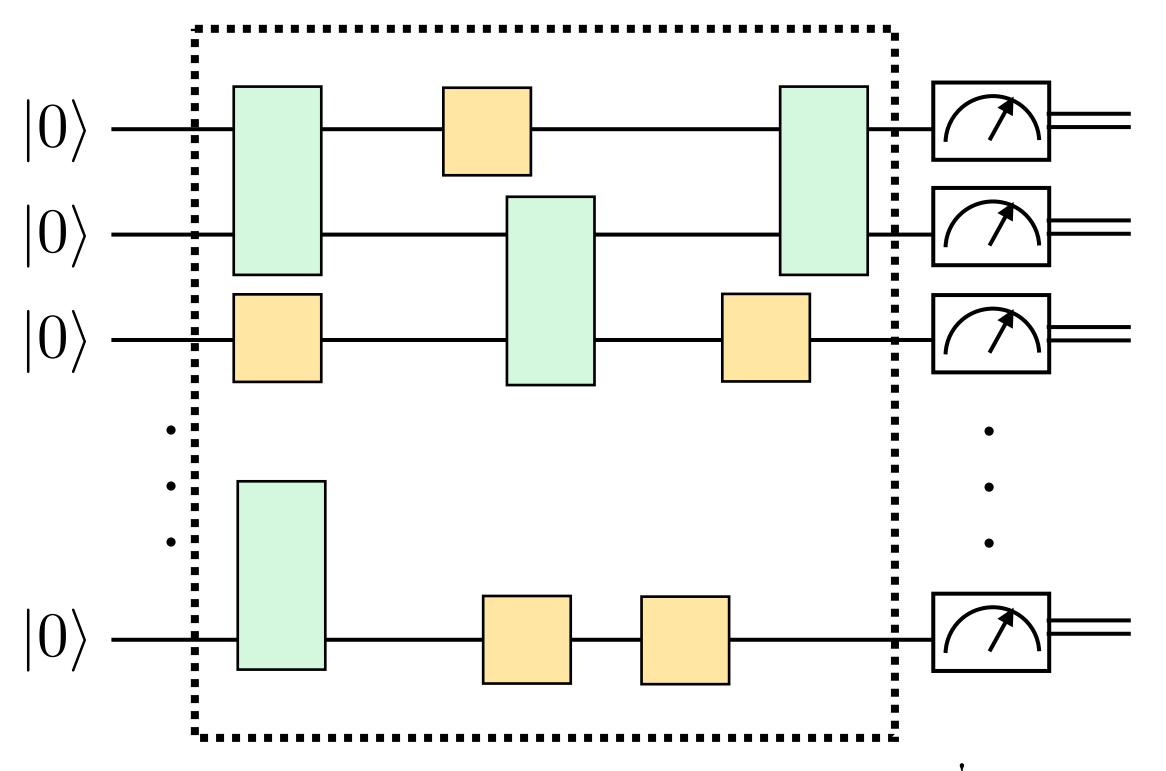
 $\rho_{\rm out} = U \rho_{\rm in} U^{\dagger} (Schrodinger pic.)$

quantum circuit U written as a $2^n \times 2^n$ unitary matrix

n-qubit system: a state vector $|\psi\rangle \in \mathbb{C}^{2^n}$

$$|\psi\rangle = \begin{pmatrix} \psi_{0...0} \\ \psi_{0...1} \\ \vdots \\ \psi_{1...1} \end{pmatrix}$$

or density matrix $\rho = |\psi\rangle\langle\psi|$ (quantum analog of prob. dist.)



Output is associated with an Hermitian matrix, called observable ${\cal M}$

The value obtained from the outputs of quantum computer:

$$\langle 0...0 | U^{\dagger}MU | 0...0 \rangle = \text{Tr}[U\rho_{\text{in}}U^{\dagger}M]$$
$$= \text{Tr}[\rho_{\text{in}}\tilde{M}]$$

$$\tilde{M} = U^{\dagger}MU$$

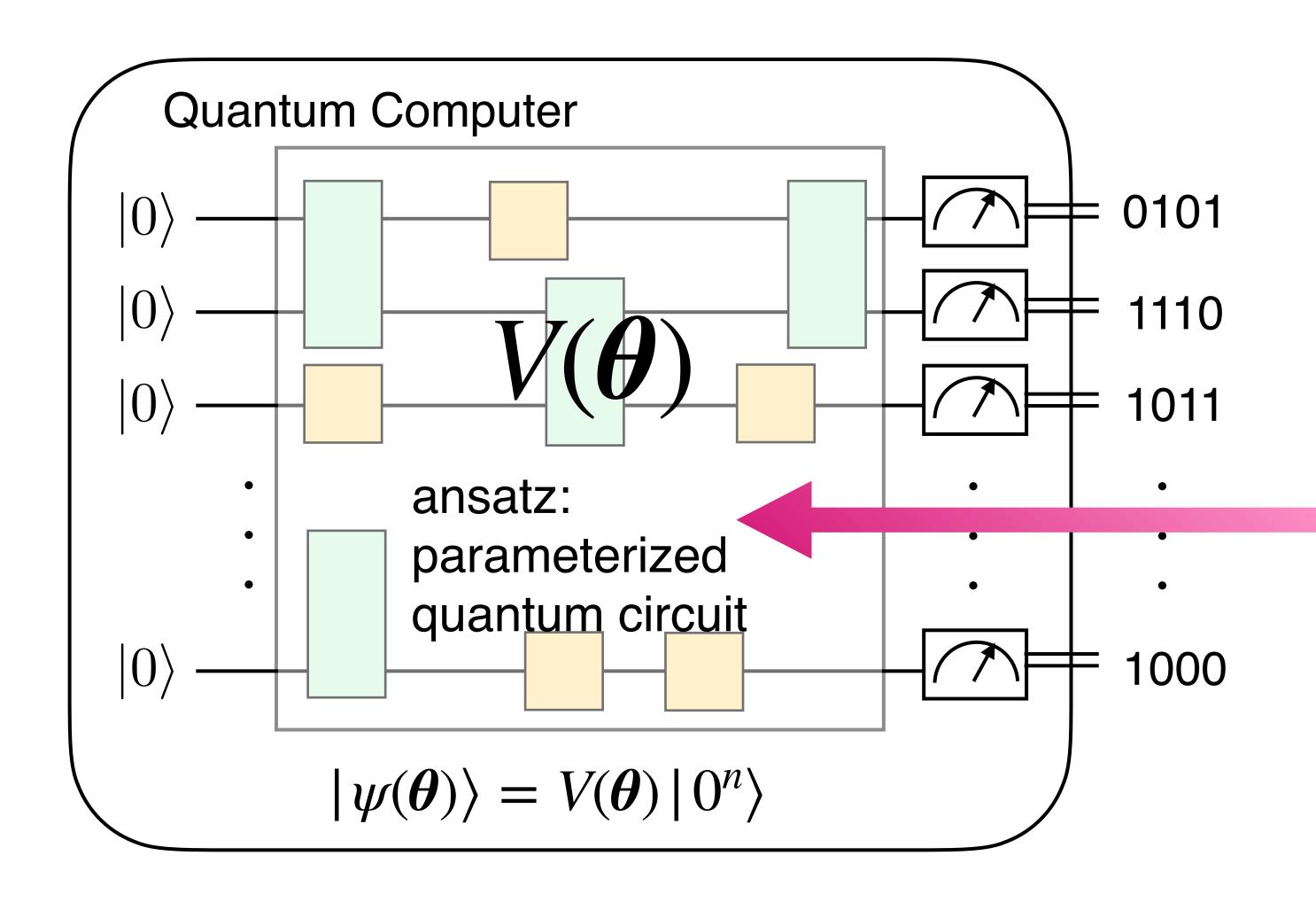
(Heisenberg pic.)

 $ho_{\rm out} = U
ho_{\rm in} U^{\dagger}$ (Schrodinger pic.)

quantum circuit U written as a $2^n \times 2^n$ unitary matrix

Variational Quantum Algorithms

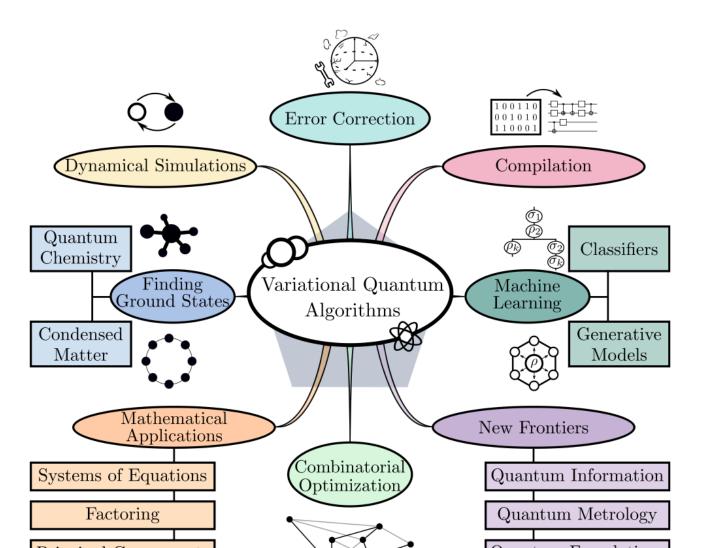
M. Cerezo et al. "Variational Quantum Algorithms", Nature Review Physics 3, 625 (2021).



Expectation value w.r.t. an observable

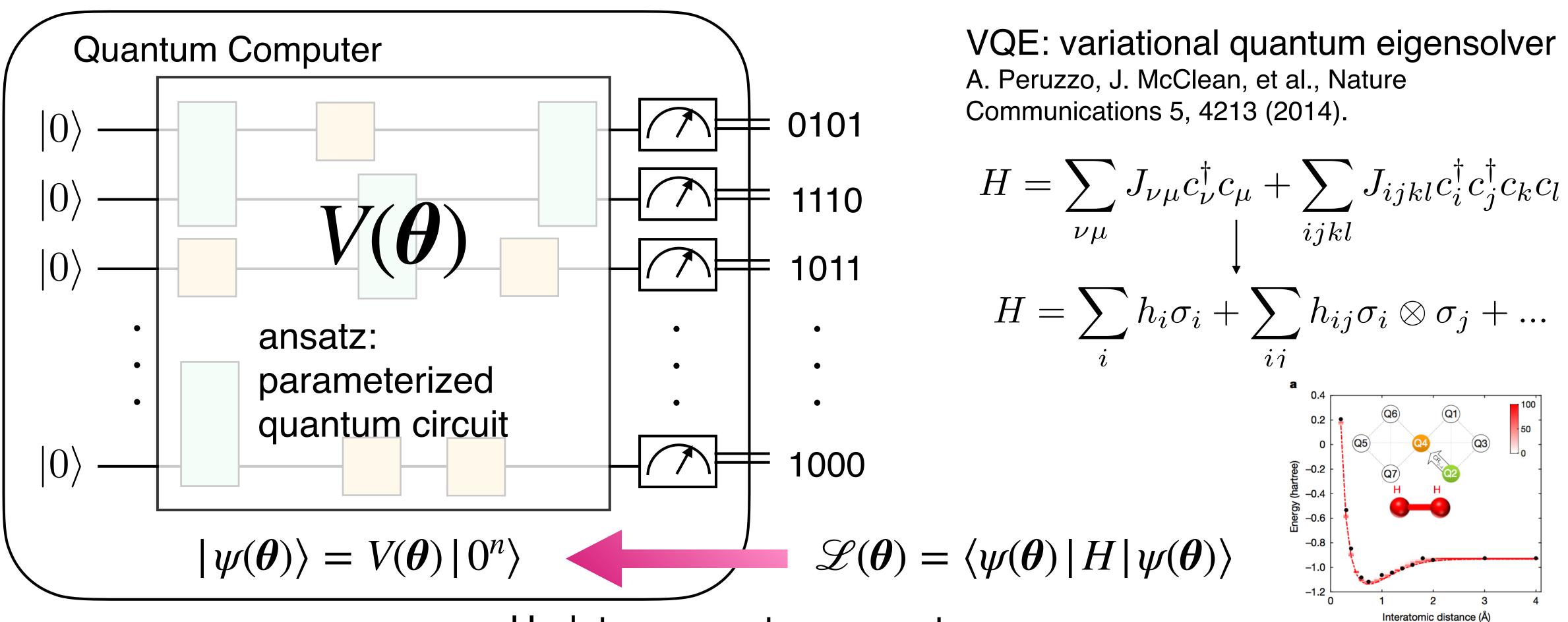
$$\mathscr{L}(\boldsymbol{\theta}) = \langle \psi(\boldsymbol{\theta}) \, | \, O \, | \, \psi(\boldsymbol{\theta}) \rangle$$

Update parameters so as to minimize the cost function



Variational Quantum Algorithms

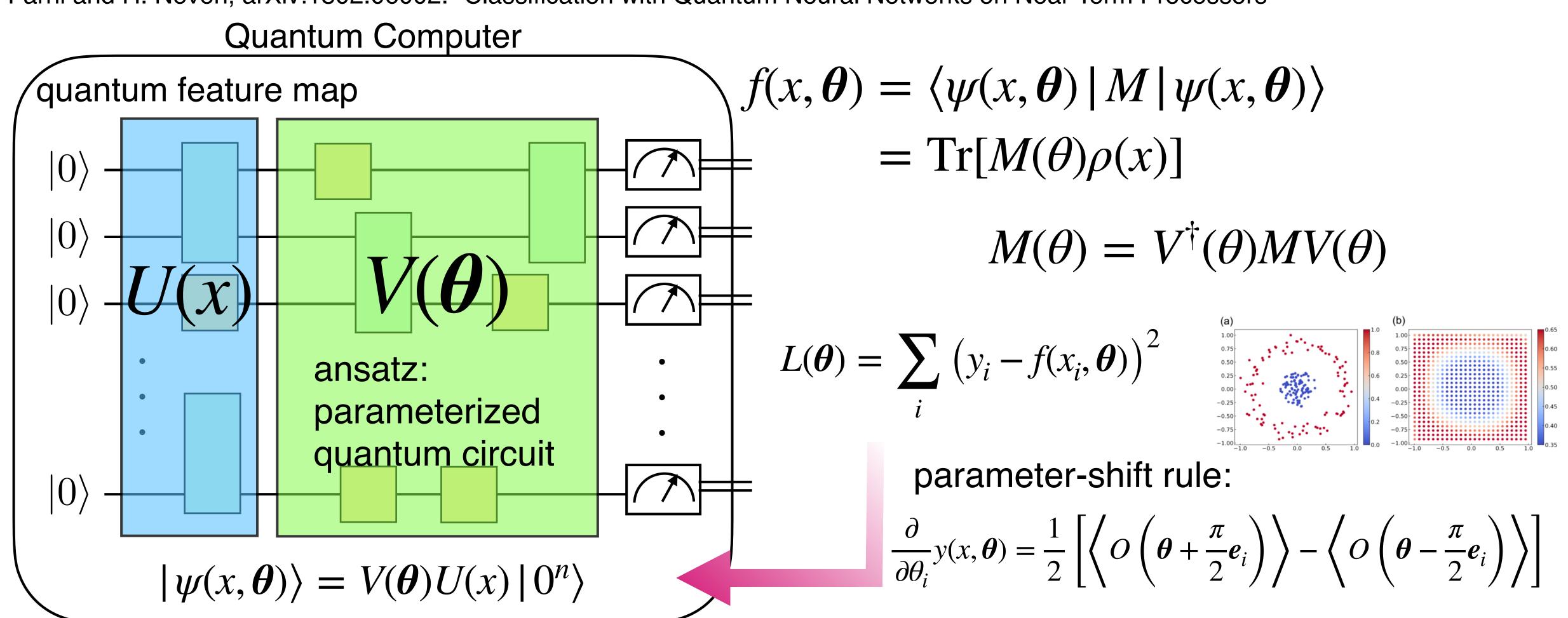
M. Cerezo et al. "Variational Quantum Algorithms", Nature Review Physics 3, 625 (2021).



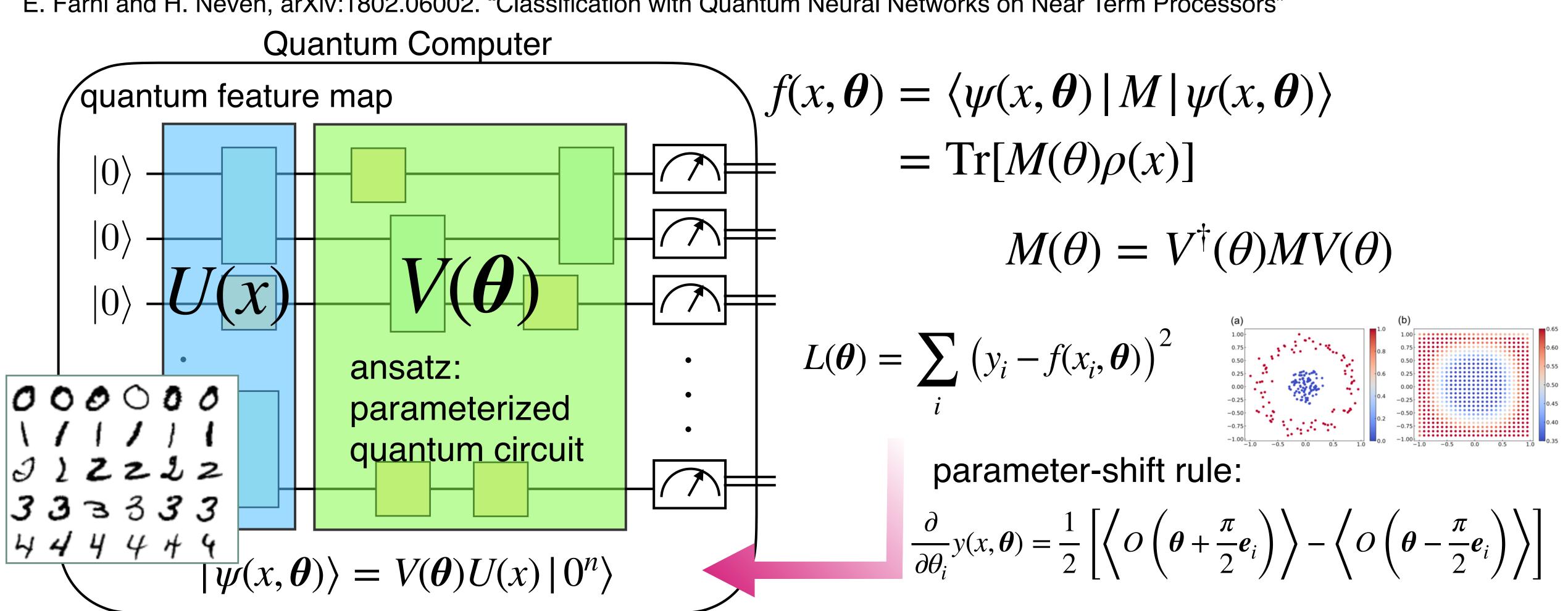
Update parameters so as to minimize the cost function

Kandala, Mezzacapo *et al,* Nature **549** 242 (2017)

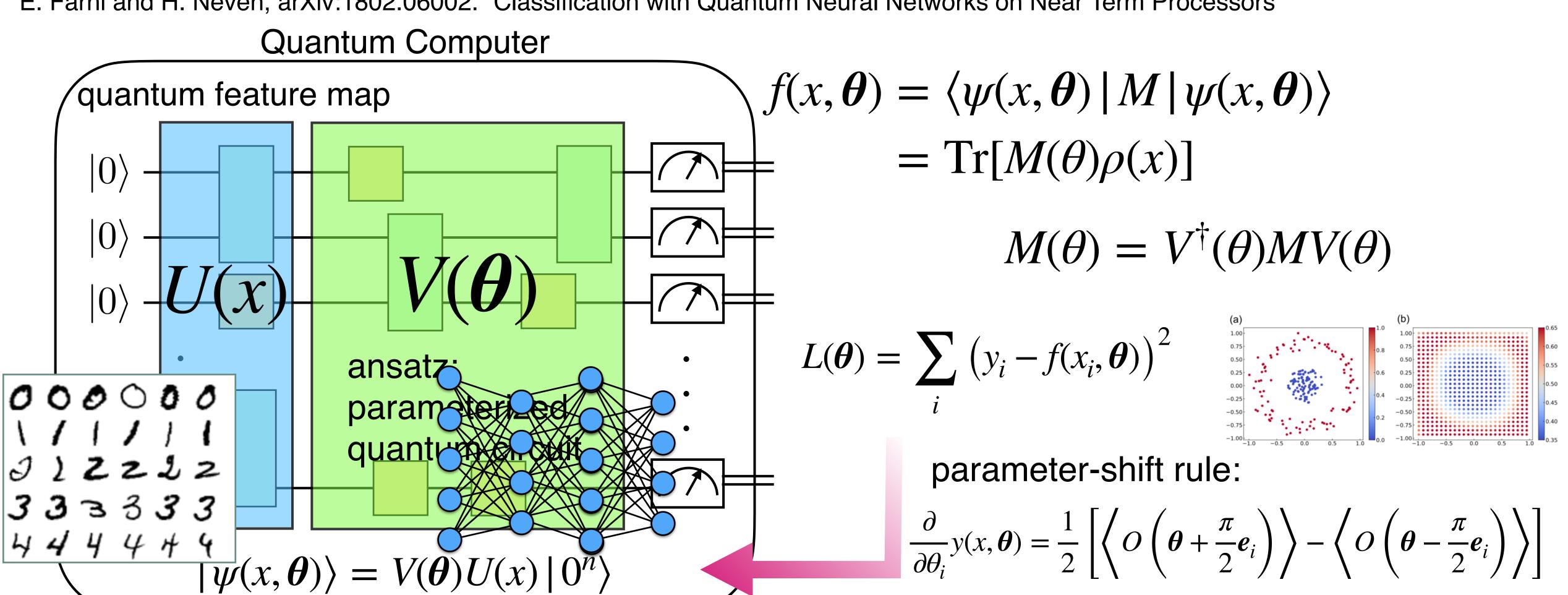
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii "Quantum Circuit Learning", Phys. Rev. A 98, 032309 (2018).
- E. Farhi and H. Neven, arXiv:1802.06002. "Classification with Quantum Neural Networks on Near Term Processors"



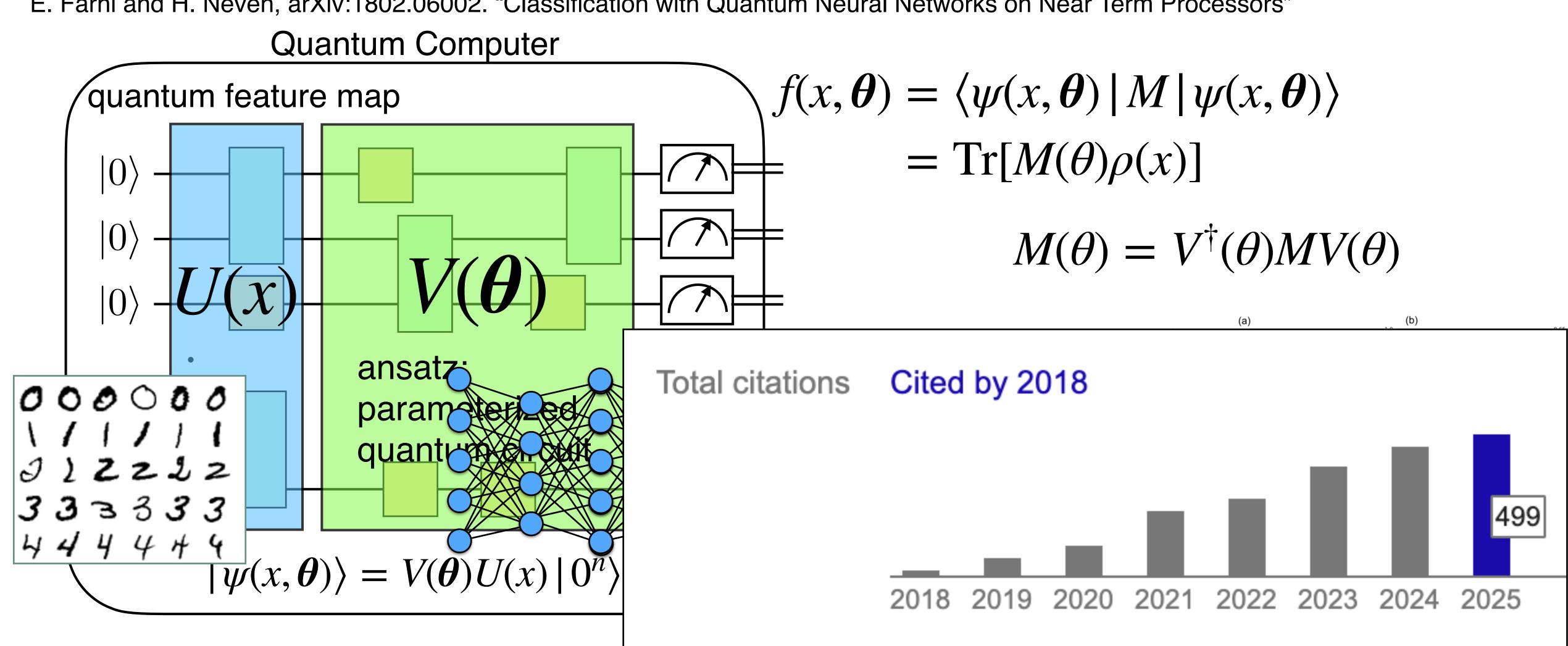
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii "Quantum Circuit Learning", Phys. Rev. A 98, 032309 (2018).
- E. Farhi and H. Neven, arXiv:1802.06002. "Classification with Quantum Neural Networks on Near Term Processors"



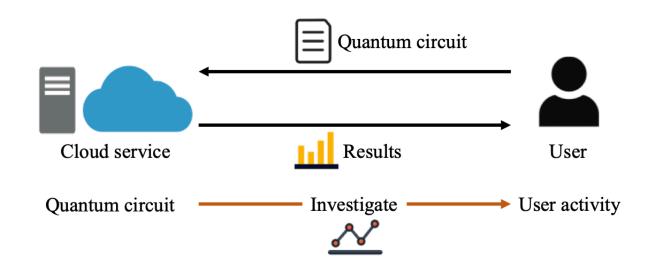
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii "Quantum Circuit Learning", Phys. Rev. A 98, 032309 (2018).
- E. Farhi and H. Neven, arXiv:1802.06002. "Classification with Quantum Neural Networks on Near Term Processors"



- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii "Quantum Circuit Learning", Phys. Rev. A 98, 032309 (2018).
- E. Farhi and H. Neven, arXiv:1802.06002. "Classification with Quantum Neural Networks on Near Term Processors"

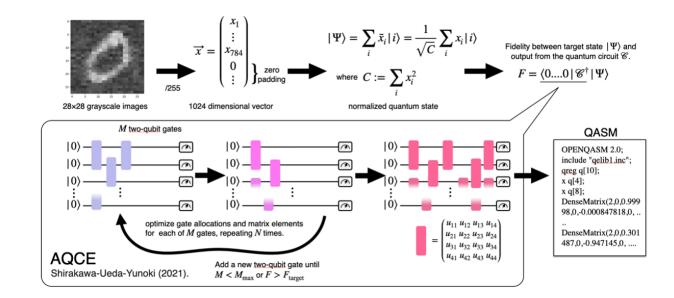


Quantum Datasets



VQE-generated dataset

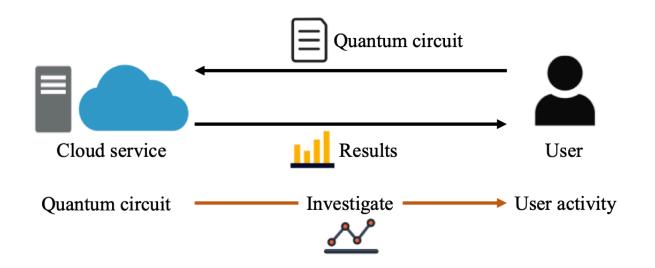
Nakayama-Mitarai-Placidi-**KF** Physical Review Research (2025).



MNISQ dataset

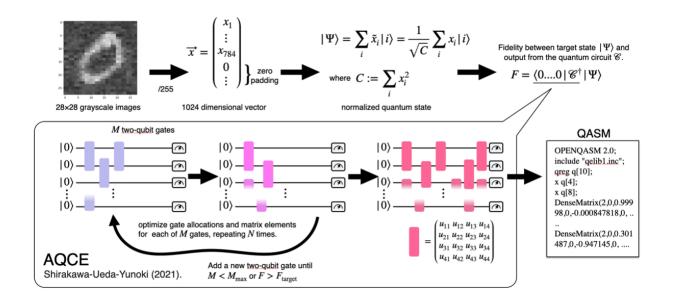
Placidi *et al.*, arXiv:2306.16627.

Quantum Datasets



VQE-generated dataset

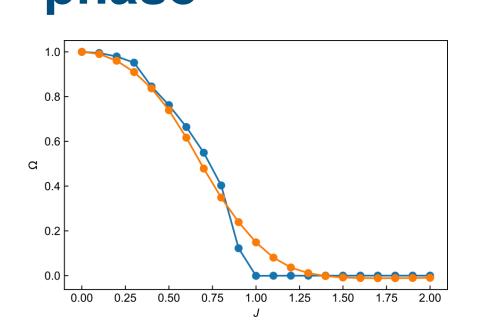
Nakayama-Mitarai-Placidi-**KF** Physical Review Research (2025).

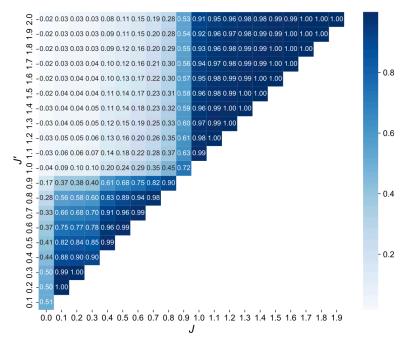


MNISQ dataset

Placidi *et al.*, arXiv:2306.16627.

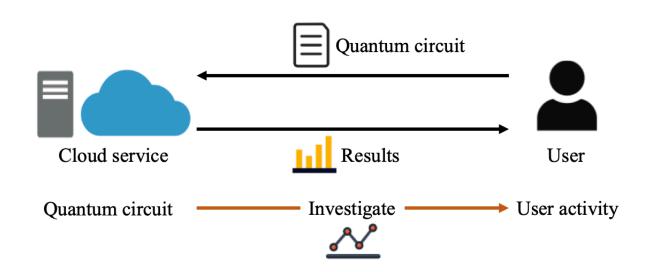
QML for detecting quantum phase





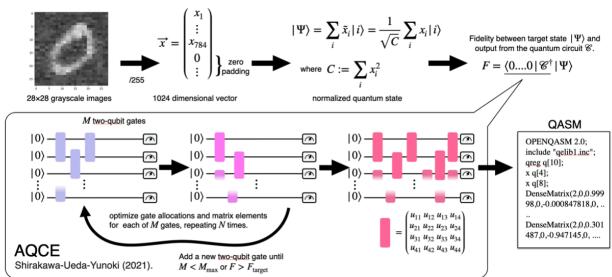
Okada-Osaki-Mitarai-**KF** Physical Review Research (2023)

Quantum Datasets



VQE-generated dataset

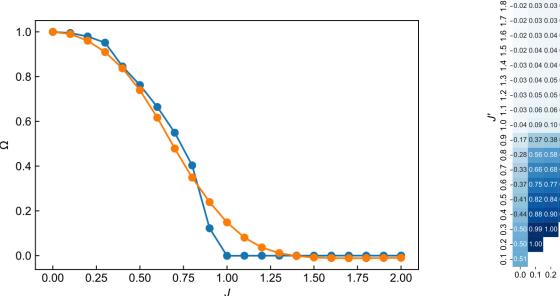
Nakayama-Mitarai-Placidi-**KF** Physical Review Research (2025).



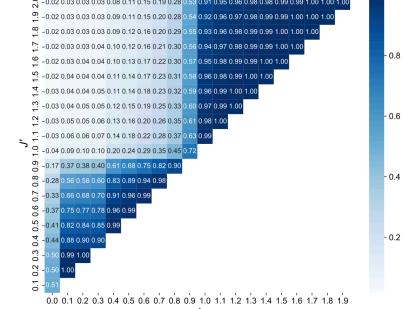
MNISQ dataset

Placidi et al., arXiv:2306.16627.

$\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_{784} \\ 0 \\ \vdots \end{pmatrix}_{\text{padding}} \xrightarrow{|\Psi\rangle} = \sum_i \widetilde{x}_i |i\rangle = \frac{1}{\sqrt{C}} \sum_i x_i |i\rangle$ Where $C := \sum_i x_i^2$ where $C := \sum_i x_i^2$ output from the quantum circuit \mathscr{C} . Fidelity between target state $|\Psi\rangle$ and output from the quantum circuit \mathscr{C} . $F = \langle 0....0 | \mathscr{C}^{\dagger} | \Psi \rangle$ 1.0 QASM

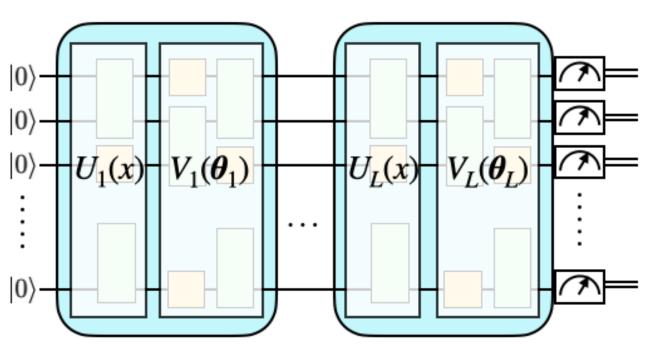


QML for detecting quantum

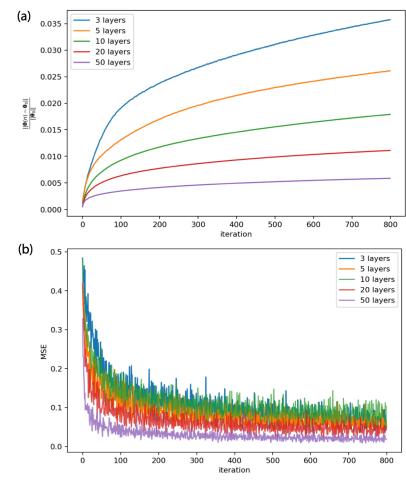


Okada-Osaki-Mitarai-KF Physical Review Research (2023)

Quantum tangent kernel

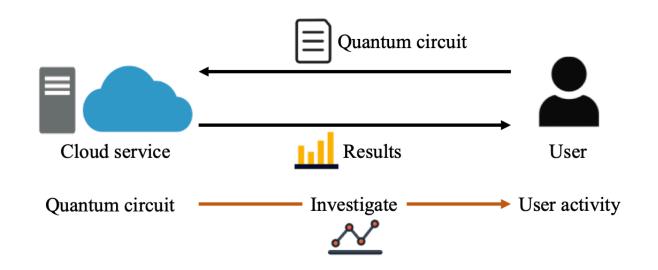


Overparameterization by data re-upload ansatz.



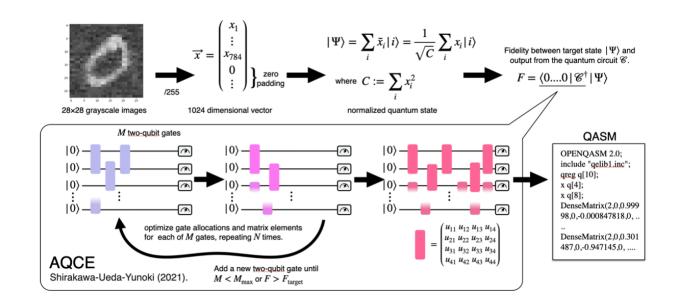
Shirai-Kubo-Mitarai-**KF** Physical Review Research (2024)

Quantum Datasets



VQE-generated dataset

Nakayama-Mitarai-Placidi-**KF**Physical Review Research (2025).

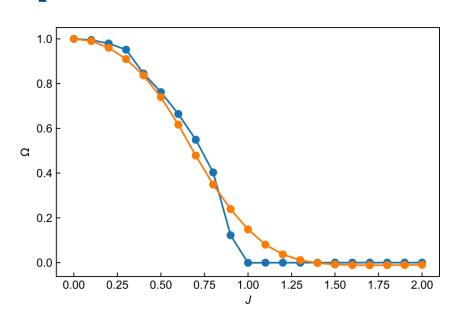


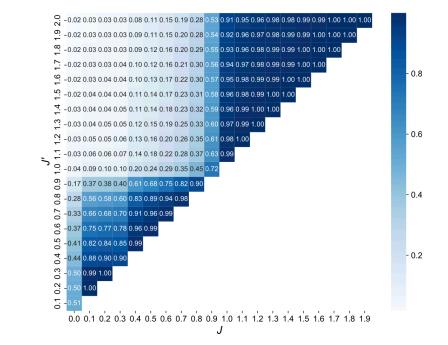
MNISQ dataset

Placidi *et al.*, arXiv:2306.16627.

QML for detecting quantum

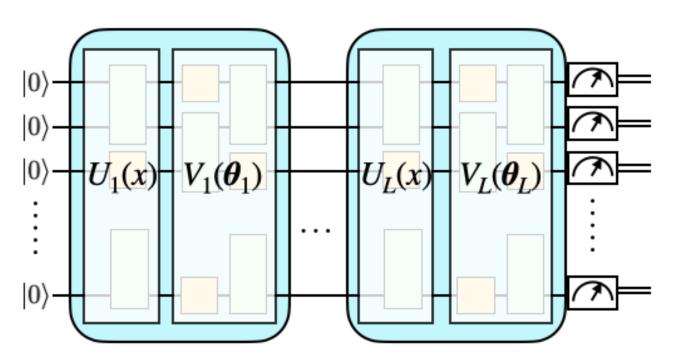
phase



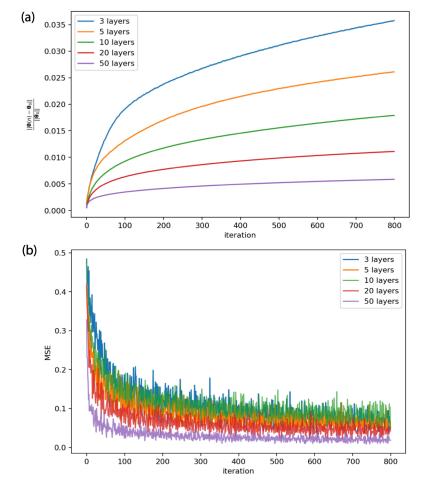


Okada-Osaki-Mitarai-KF Physical Review Research (2023)

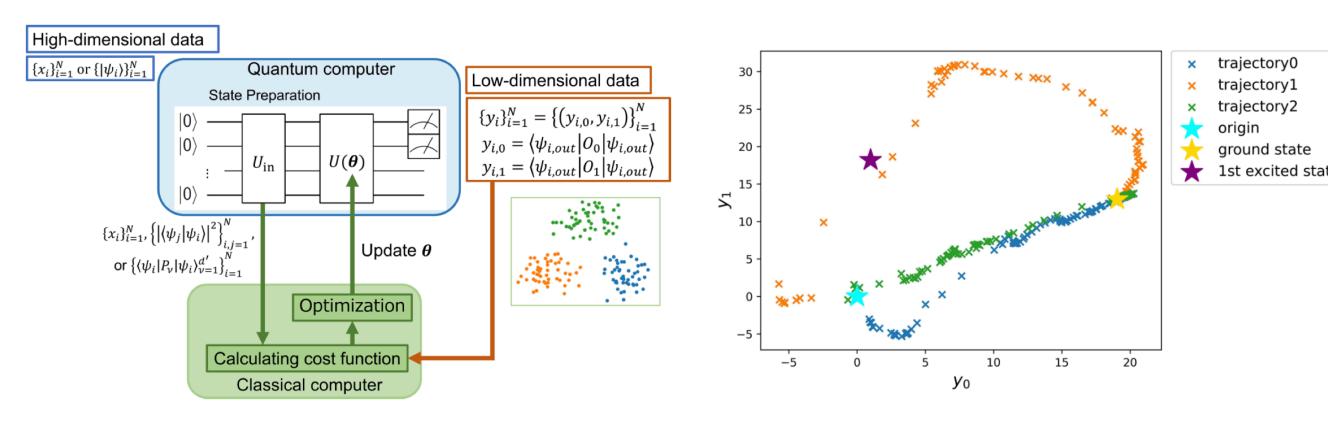
Quantum tangent kernel



Overparameterization by data re-upload ansatz.



Low-dimensional visualization of Quantum States



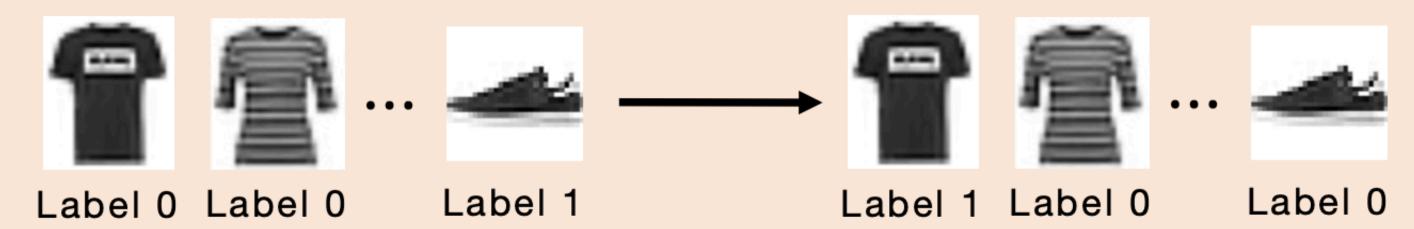
Kawase-Mitarai-**KF**, Physical Review Research (2022) Kawase-Mitarai-**KF**, Physical Review Research (2024)

What is potential advantages of Quantum Machine Learning?

Witness of Quantum Advantage in QML?

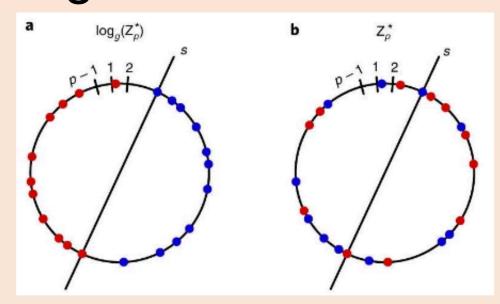
Artificially designed problem set up to be advantageous to quantum computers:

• Artificially designed problem set up to be advantageous to quantum computers:



• Dataset generated from discrete logarithmic problem:

[6] Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021)

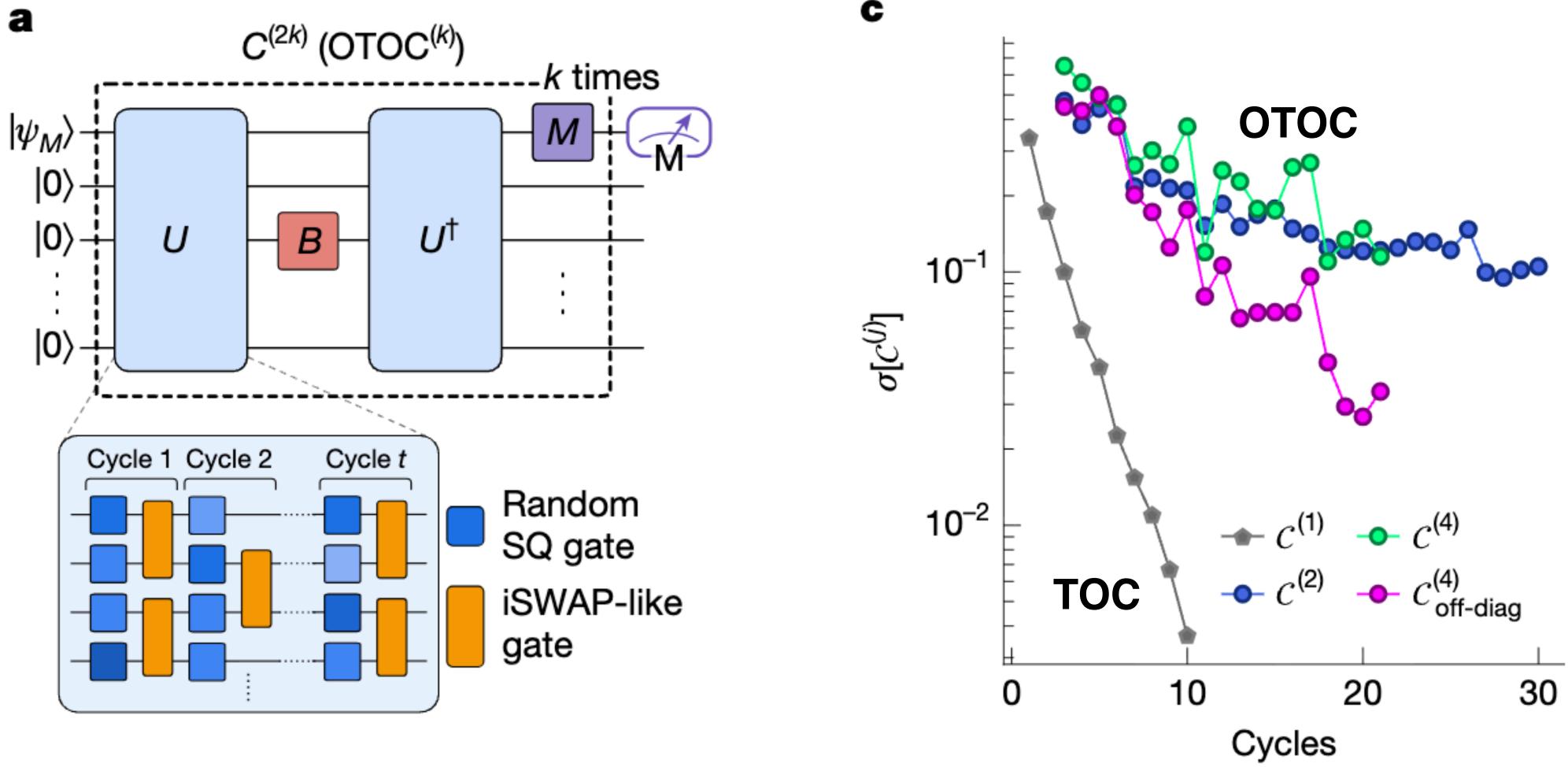


[7] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nature Physics 17, 1013 (2021)

The data sets or problem settings where QML has a "natural" advantage are not well understood.

Verifiable Quantum Advantage at the Edge of Quantum Chaos

Google Quantum AI & collaborators, "Observation of constructive interference at the edge of quantum ergodicity" Nature (2025).



OTOC is a useful metric to probe information scrambling in quantum many-body systems, where the signature of Hamiltonian is reflected. → *Quantum Echoes*

Verifiable Quantum Advantage at the edge of Quantum Chaos

Google Quantum AI & collaborators, "Quantum computation of molecular geometry via many-body nuclear spin echoes", arXiv:2510.19550.

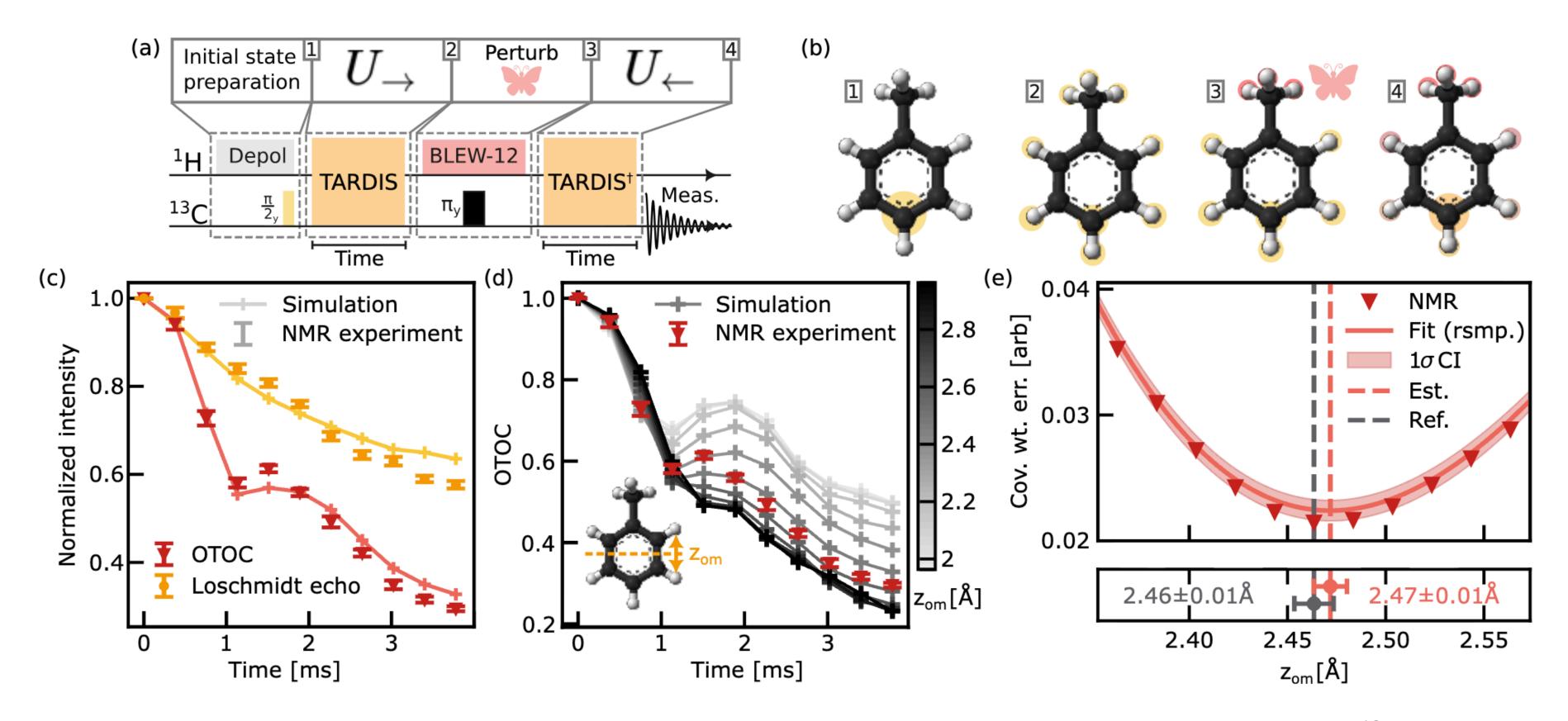


FIG. 2. Benchmarking the structural sensitivity of out-of-time-ordered correlators (OTOCs) in $[4-^{13}C]$ -toluene.

Experimentally (OTOC NMR experiments) supervised learning with quantum computers with trainable parameters.

Verifiable Quantum Advantage at the edge of Quantum Chaos

Google Quantum AI & collaborators, "Quantum computation of molecular geometry via many-body nuclear spin echoes", arXiv:2510.19550.

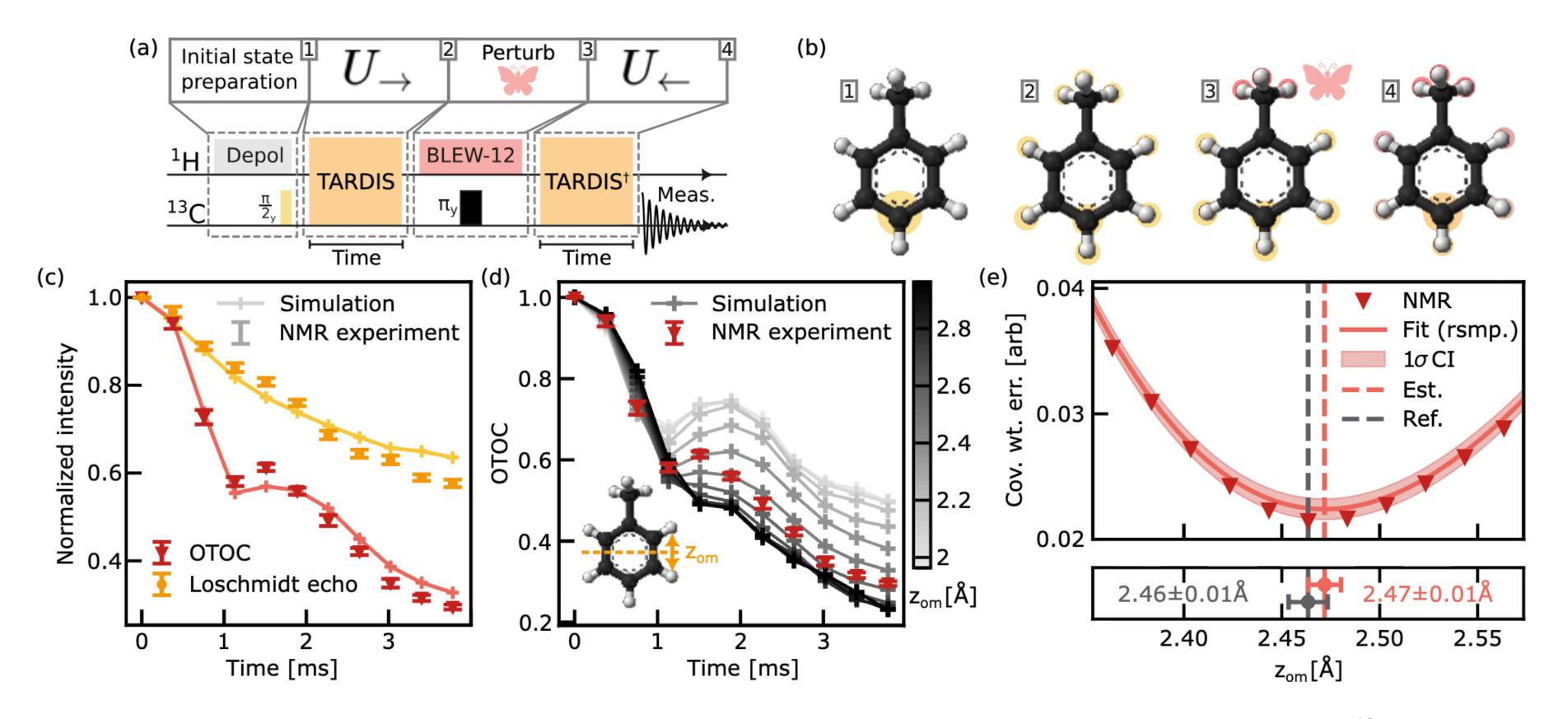


FIG. 2. Benchmarking the structural sensitivity of out-of-time-ordered correlators (OTOCs) in $[4-^{13}C]$ -toluene.

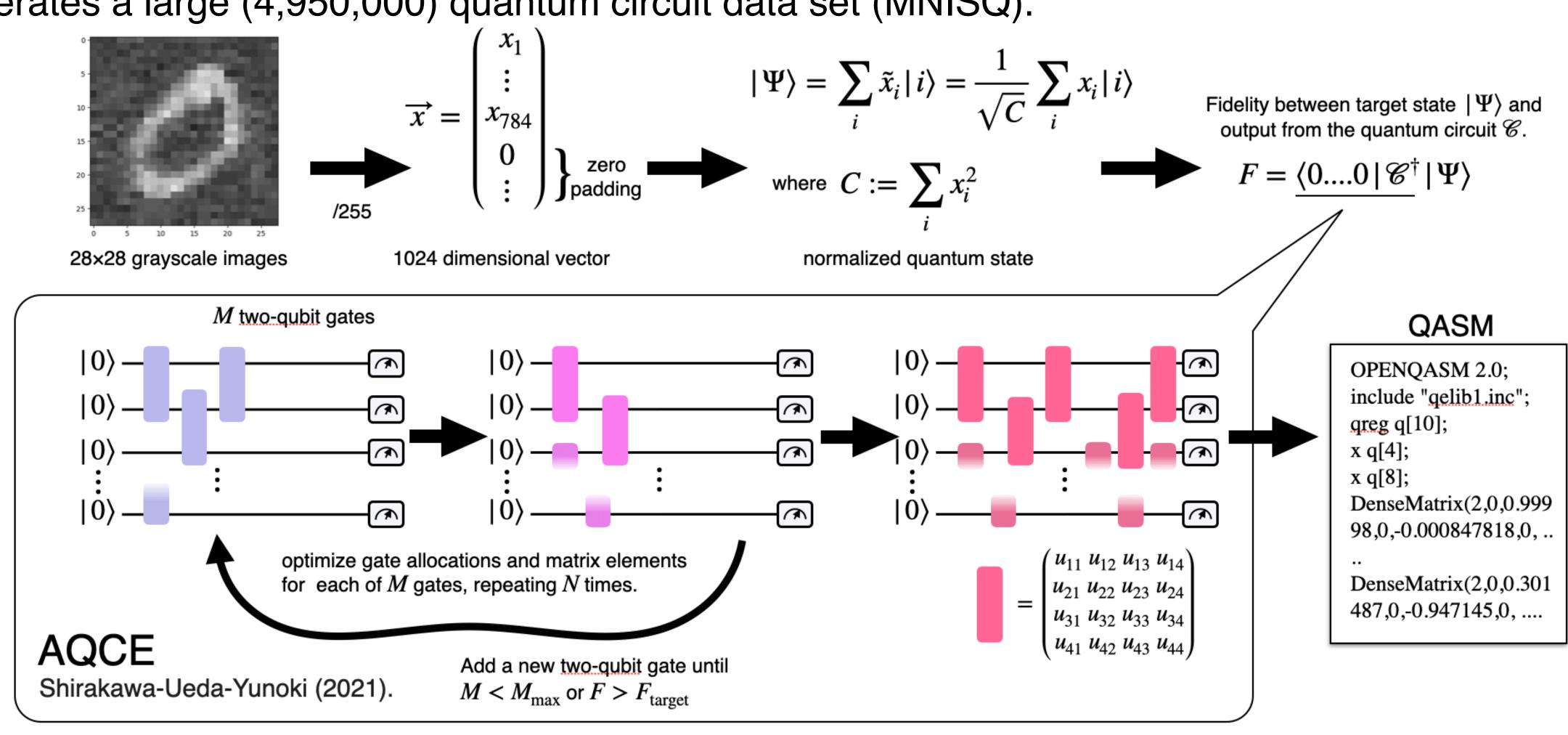
Experimentally (OTOC NMR experiments) supervised learning with quantum computers with trainable parameters.

→"Quantum data" is important!

MNISQ dataset: World Largest Quantum "Circuit" Dataset

Placidi et al., "MNISQ: A Large-Scale Quantum Circuit Dataset for Machine Learning on/for Quantum Computers in the NISQ era." arXiv:2306.16627.

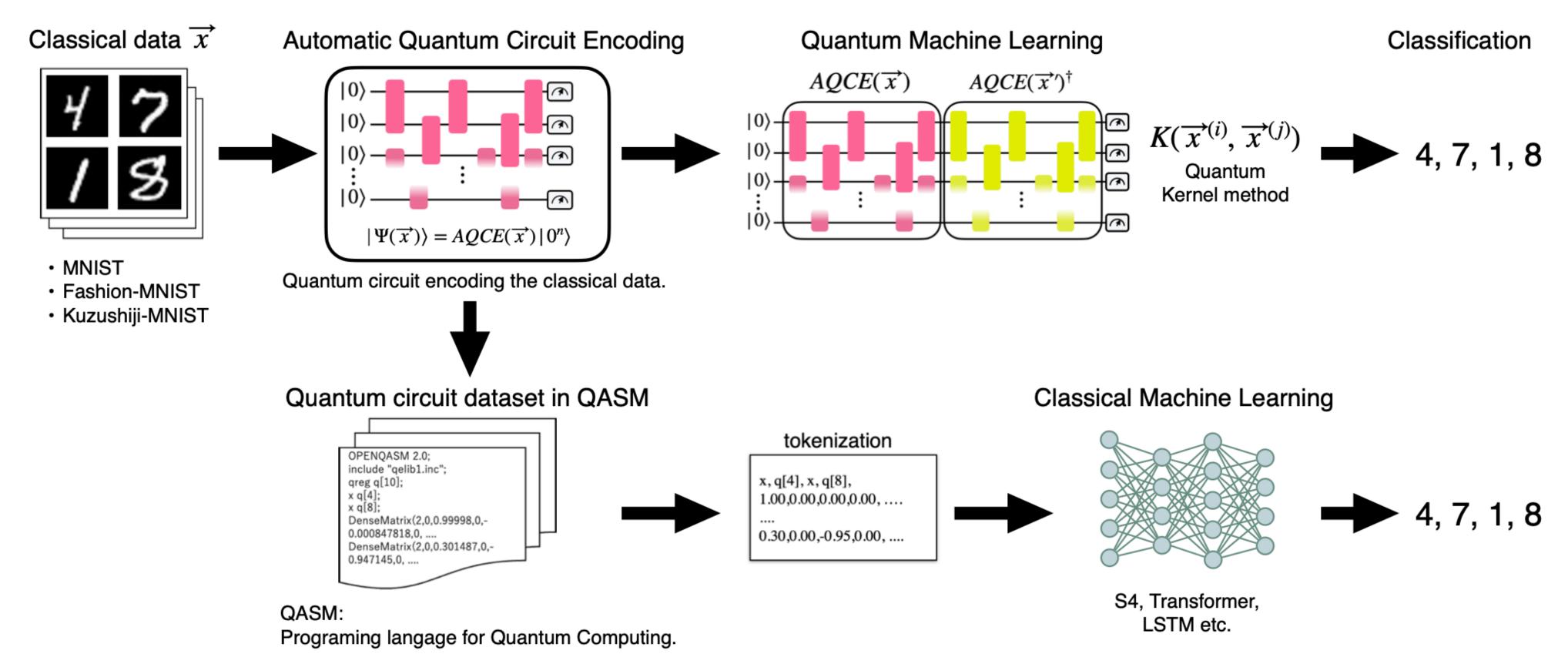
Embedding classical dataset (MNIST, Fashion-MNIST, Kuzushiji-MNIST) into quantum circuits generates a large (4,950,000) quantum circuit data set (MNISQ).



MNISQ dataset: World Largest Quantum "Circuit" Dataset

Placidi et al., "MNISQ: A Large-Scale Quantum Circuit Dataset for Machine Learning on/for Quantum Computers in the NISQ era." arXiv:2306.16627.

Embedding classical dataset (MNIST, Fashion-MNIST, Kuzushiji-MNIST) into quantum circuits generates a large (4,950,000) quantum circuit data set (MNISQ).

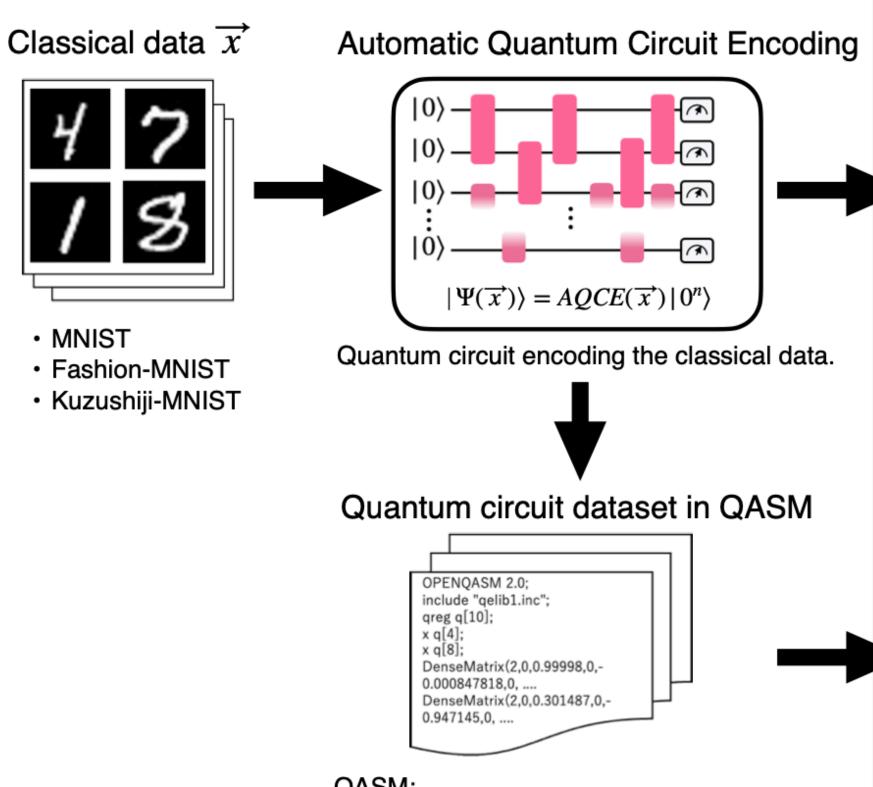


While QML(quantum kernel method) has a classification performance >97%, the classical ML language model (S4, transformer) has a performance of about 77%.

MNISQ dataset: World Largest Quantum "Circuit" Dataset

Placidi et al., "MNISQ: A Large-Scale Quantum Circuit Da NISQ era." arXiv:2306.16627.

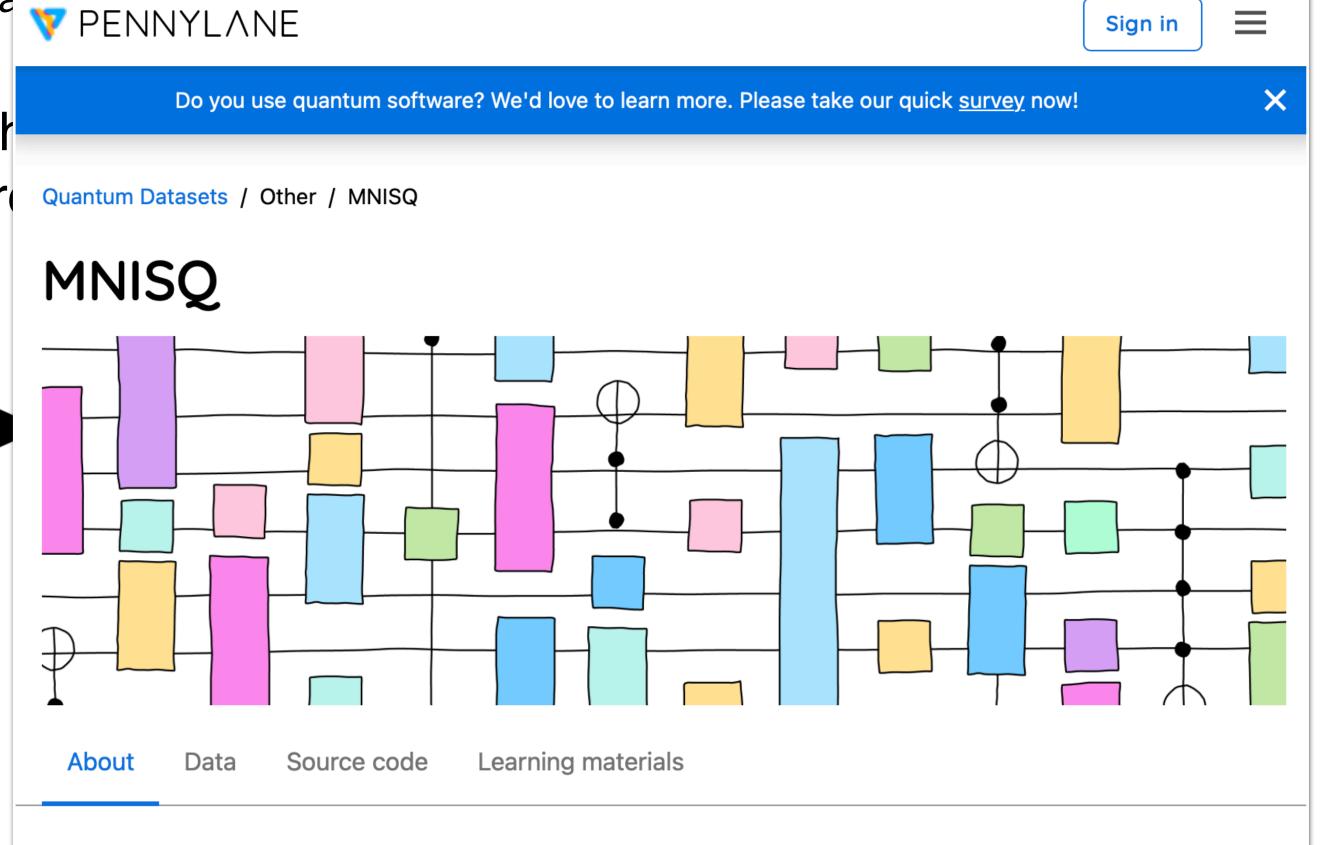
Embedding classical dataset (MNIST, Fast generates a large (4,950,000) quantum cir



QASM:

Programing langage for Quantum Computing.

While QML(quantum kernel method) h ML language model (S4, transformer) has a periormance or about 11/0.



Using this dataset

This dataset contains a portion of MNISQ: a dataset that encodes data from MNIST, Fashion-MNIST, and Kuzushiji-MNIST into quantum circuits. Here, we have included some of the MNIST training circuits at 90% fidelity, adapted to facilitate use with PennyLane. The original data can be downloaded from the authors' source.

Description of the dataset

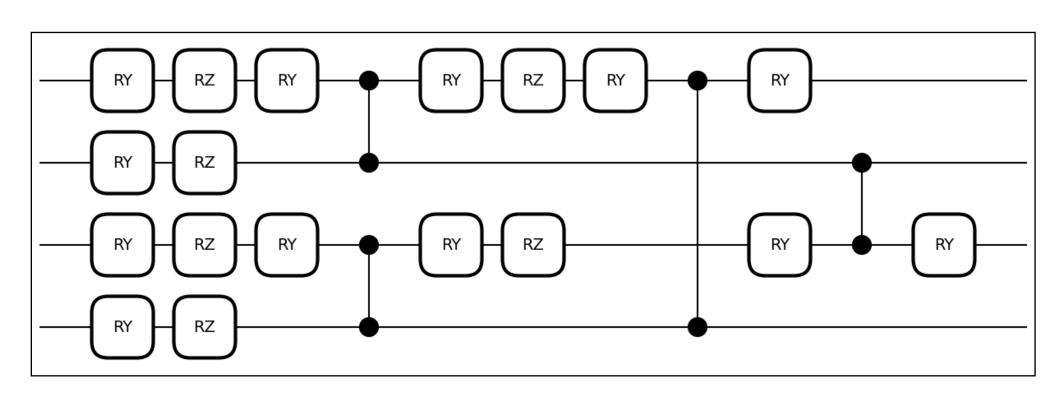
 \wedge

Automating Quantum Feature Map Design Using LLM

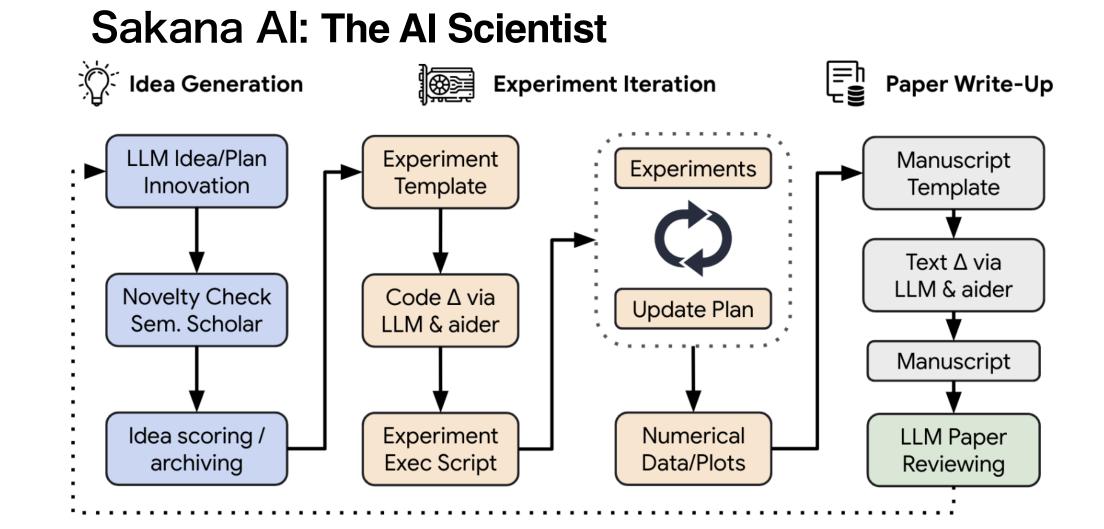
K Sakka, K Mitarai, K Fujii, "Automating quantum feature map design via large language models"

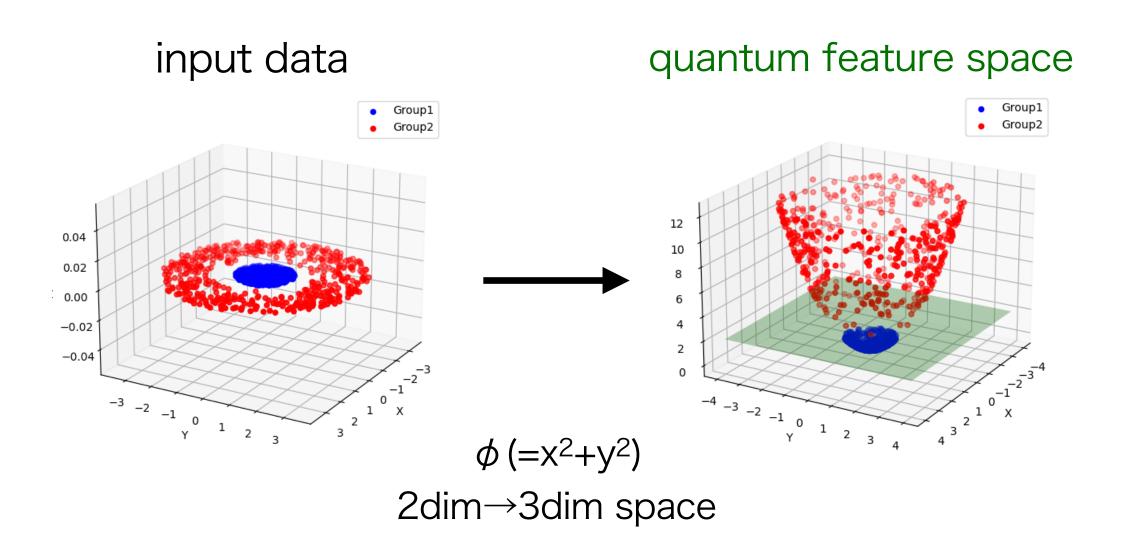
arXiv:2504.07396

- Al—especially LLMs—enables research automation across fields
- Designing effective quantum feature maps still relies on human intuition
- Goal: Automate quantum feature map design using LLMs



Quantum Feature Map: Quantum circuit that maps an input data to a quantum state.

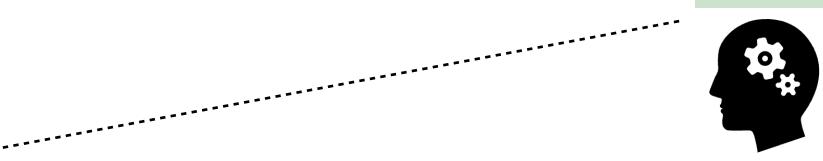




Automating Quantum Feature Map Design Using LLM

K Sakka, K Mitarai, K Fujii, "Automating quantum feature map design via large language models" arXiv:2504.07396

Dataset Quantum Feature Map QML model Performance analysis Kernel + SVM SVM



LLM Feedback Loop Automating Trial-and-Error Design of Quantum Feature Maps

Organizing Information for LLM Utilization

- Use up-to-date research information, including papers and reports
- Extract papers via arXiv API and store them in a searchable database

Prompt Engineering

- Encode expert reasoning processes into prompts
- Guide LLM toward feasible solutions leveraging quantum properties

Experiment Support & Management

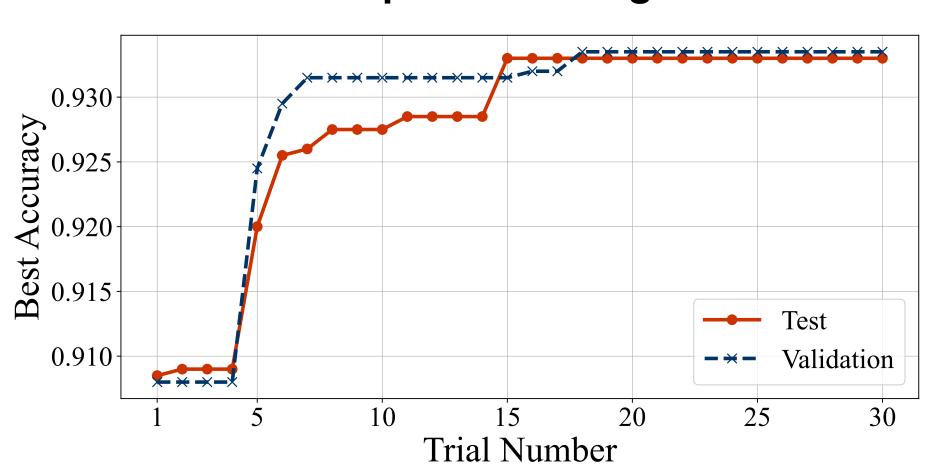
- Automate all processes except feature map generation using tools
- Store trial results as feedback logs for iterative improvement

20

Automating Quantum Feature Map Design Using LLM

K Sakka, K Mitarai, K Fujii, "Automating quantum feature map design via large language models" arXiv:2504.07396

Performance Improves Through Iterative Trials



Type	Method	Accuracy		
		MNIST	Fashion-MNIST	CIFAR-10
Classical	Linear Kernel	0.9385 ± 0.0002	0.8437 ± 0.0009	0.4087 ± 0.0011
	Polynomial Kernel	0.9667 ± 0.0058	0.8702 ± 0.0030	0.5375 ± 0.0014
	Sigmoid Kernel	0.9343 ± 0.0002	0.8189 ± 0.0120	0.4079 ± 0.0006
	RBF Kernel	0.9765 ± 0.0005	0.8864 ± 0.0014	0.5669 ± 0.0085
Quantum	ZZ FeatureMap 5	0.9255 ± 0.0009	0.8252 ± 0.0023	0.3907 ± 0.0016
	NPQC FeatureMap [20]	0.9644 ± 0.0028	0.8749 ± 0.0026	0.4903 ± 0.0188
	YZCX FeatureMap [20]	0.9727 ± 0.0006	0.8778 ± 0.0049	0.4753 ± 0.0341
	Astronaut V1 (Previous, Section D)	0.9731 ± 0.0008	0.8835 ± 0.0021	0.5290 ± 0.0030
	Astronaut V2 (Ours, 10 qubits)	0.9772 ± 0.0002	0.8880 ± 0.0014	0.5450 ± 0.0057
	Astronaut V2 (Ours, 14 qubits)	0.9767 ± 0.0002	0.8888 ± 0.0007	0.5734 ± 0.0006

- The generated feature maps outperform existing quantum feature maps across all datasets.
- Compared with classical methods, they outperform linear, polynomial, sigmoid, RBF kernels.

Released as OSS



Astronaut

Implementation of automated quantum feature map design (as demonstrated in the paper)

This approach can be extended beyond quantum machine learning to any research domain that requires iterative optimization — such as algorithm design or noise mitigation.

Summary

- Quantum Machine Learning leverages highdimensional Hilbert spaces by quantum feature maps.
- Evidence of verifiable quantum advantage emerges from quantum-chaos/OTOC experiments.
- Quantum data (e.g., MNISQ) is crucial for benchmarking and training QML.
- Al/LLMs can automate quantum-feature-map design and accelerate quantum-computing research.

Funding acknowledgement:

MEXT Q-LEAP Quantum AI flagship JST COI-NEXT Quantum Software Research Hub JST Moonshot Goal6

Quantum Computing Theory Research Team at RQC, RIKEN

Quantum Computing (theory) Group at Osaka Univ.