

Selected news on strangeness production at the LHC

QCD challenges from pp to AA Münster 2-6 Sep. 2024

* Livio.Bianchi@cern.ch

Strange hadron yields from small to large systems

2

23

Ratio of yields to $(\pi^++\pi^-)$ p+<u>p</u> (×6) $12K_{e}^{0}$ 0⁻¹ $\Lambda + \overline{\Lambda} (\times 2)$ 2Φ (×2) ⁻+Ξ⁺ (×3) 10⁻² $\Omega^{-}+\overline{\Omega}^{+}$ (×12)-ALICE O pp. $\sqrt{s} = 7 \text{ TeV}$ • ALICE Preliminary pp. **v**s = 13 TeV \Diamond p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ♦ p-Pb, √s_{NN} = 8.16 TeV 10⁻³ ¥ Xe-Xe, √s_{NN} = 5.44 TeV (K⁰₂, Ξ, Ω) ¥ Xe-Xe, √s_{NN} = 5.44 TeV (p, Φ)— Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV} (K_{0}^{0}, \Lambda, \Xi, \Omega)$ ■ Pb-Pb, √s_{NN} = 5.02 TeV (p, Φ) 10^{3} 10² 10⁴ 10 $\left<\mathrm{d}\mathrm{N_{ch}}\!/\mathrm{d}\eta\right>_{\left|\eta
ight|<0.5}$ ALI-PREL-321075

ALICE, Nature Physics 13, 535-539 (2017)

Iconic figure at the LHC:

- smooth strangeness enhancement (SE) VS final state multiplicity
- Strange content hierarchy: $SE(\Omega) > SE(\Xi) > SE(\Lambda, K_{s}^{0})$
- strangeness- and not baryon-related
- peculiar role of φ meson

Strange, but also not strange!

ALICE Collaboration, The ALICE experiment: a journey through QCD, Eur. Phys. J. C 84,

The ratio depends on the event multiplicity in a **qualitatively similar** way **in pp, p-Pb and Pb-Pb**

The magnitude is smaller in pp with respect to p-Pb and Pb-Pb, but note that for similar percentiles $\langle dN_{ch}/d\eta \rangle$ is dramatically different among the three systems

In small systems spectra evolve with $\langle dN_{ch}/d\eta \rangle$ in a qualitative similar way as in heavy ion collisions (valid for all identified particles studied)

Striking similarities between light and heavy flavors in small systems

Intriguing observation:

- Hydro for charm? Hard to believe! Not supported by A-A observations: $\Rightarrow \text{low-}p_{T} \text{ hierarchy } v_{2}^{h} > v_{2}^{c} > v_{2}^{cc}$ $\Rightarrow \Lambda/K_{S}^{0} > \Lambda_{c}/D_{0}$
 - \Rightarrow Challenges hydro hypothesis for light flavors in pp
- Coalescence at intermediate p_T with same net effect for light and heavy flavors?

Need to extend Λ_c/D_0 at lower p_T and with larger statistics

Recent extensions: $P(n_s)$

$P(n_s)$: multiplicity distribution of strange hadrons in pp@5.02 TeV

Livio Bianchi QCDCppAA 3 Sep 2024

23

Unique opportunity to test the connection between average-charged and strange particle multiplicity production throughout very extreme situations

From this strange particle multiplicity distribution, the average production yield of *n* particles per event can be calculated through:

$$\langle \mathbf{Y}_{nS} \rangle = \sum_{i=n}^{n^{max}} \frac{i!}{n!(i-n)!} \cdot \mathbf{P}(n)$$

- (Y_{1S}) is the average of the multiplicity distribution
 (corresponding to what was called "dN/dy" or "yield" in previous publications)
- (Y_{n>1 S}) identifies the average production yield of doublets, triplets, ..., multiplets of the given particle.

ALI-PREL-571995

$\langle Y_{ns} \rangle$: multiplets production yields

Livio Bianchi QCDCppAA 3 Sep 2024

Agreement with models deteriorates with increasing *n*

Comparison to models very statistics demanding! 10B events here. Would be interesting to see comparison to EPOS 4

No difference in predictions from Monash and QCD-CR Ropes for K^0_{s} , while large improvements for baryons \rightarrow trend with multiplicity well described, but undershooting

EPOS-LHC: better agreement at high multiplicity than at low

$\Delta S=0$ ratios

Enhancement with multiplicity not connected to strangeness unbalance (mass? baryon number? ...)

Very well described by Pythia 8 QCD-CR Ropes

Livio Bianchi QCDCppAA 3 Sep 2024

$\Delta S=0$ ratios

Enhancement with multiplicity not connected to strangeness unbalance (mass? baryon number? ...)

Very well described by Pythia 8 QCD-CR Ropes

Not mass $(m_{\Xi} > 2*m_{KOS})$ Not baryon number

number of light quarks involved!

Again, good description by Pythia 8 QCD-CR Ropes which does a good job in re-connecting strange to lighter quarks

Is it all played by QCD-CR or ropes actually plays a role?

Many more ratios to come!

Production in- and out-of-jet

Are spectra modified in the same way in- and out-of-the jet?

(hadron, jet)

 $\Delta n^2 + \Delta \omega^2$

nge hadron(φ, η)

 $jet(\varphi, \eta)$

Perpendicular Cone

12

pp collisions feature complicated topologies. Jets and Underlying

Expect QGP-like features to emerge in UE rather than in

↑ jet axis

iet cone

charged

primary

particles

Leading hadron method:

- jet direction: the one of the highest p_{τ} hadron •
- $p_{\tau}^{\text{leading}} > 4-5 \text{ GeV/c}$ •
- hadron-strange correlation method to extract particle yields in- and out-of-the jet

Jet finding:

- Charged track selection: $|\eta| < 0.9, p_{_{
 m T}} > 0.15 \, {
 m GeV/}c$
- Jet finder: anti- k_{τ} , R = 0.4, $|\eta_{\rm jet}| < 0.35, p_{\rm T,iet} > 10 ~{\rm GeV/}c$
- Strange particles found in:
 - Jet Cone \rightarrow Ο
 - $R_{\rm Strange hadron, \, jet} = \sqrt{(\Delta \eta^2 + \Delta \varphi^2)} < 0.4$
 - Underlying Event \rightarrow perp. cone method Ο
 - Jet fragmentation \rightarrow JE = JC UE Ο

baryon/meson anomaly in- and out-of-jet in pp

ALICE, Phys. Lett. B 827 (2022) 136984

Spectra are harder in the jet than in the perpendicular cone (UE)

Dynamics in the baryon/meson are dominated by what observed in the UE

Statistics-hungry analysis, but missing the multiplicity dependence we miss part of the fun! Need to change our "definition" of jet

Livio Bianchi QCDCppAA 3 Sep 2024

14

ALICE Collaboration, arXiv:2405.14511

(multi-)strange hadrons are mostly produced outside the jet [in events with a leading particle with $p_{\tau} > 3-4 \text{ GeV}/c$]

... spectra evolution observed only in the transverse to leading...

ALICE Collaboration, arXiv:2405.14511

Strangeness enhancement in- and out-of-the jet

... spectra evolution observed only in the transverse to leading... Ž,[r] ≥ 0.14 ≥ 2 Toward leading $|\Delta \eta| < 0.86, |\Delta \varphi| < 1.1$ Transverse to leading (GeV/c) $-0.86 < |\Delta \eta| < 1.2, 0.96 < \Delta \varphi < 1.8$ 0.12 ALICE pp, Vs = 13 TeV 10^{4} V0M Multiplicity Percentile $|\eta^{\text{trigg}}| < 0.8, |\eta^{K_s^0}| < 0.8$ Full h-K⁰_S correlation, $p_{-}^{\text{trigg}} > 3 \text{ GeV}/c$ • 0-0.01% $(x2^{10}) \equiv 0.01-0.05\% (x2^{9}) \Rightarrow 0.05-0.1\% (x2^{8})$ 10^{3} $|\Delta \eta| < 1.2, -\pi/2 < \Delta \phi < 3\pi/2$ $+ 0-5\% (x2^7) \pm 5-10\% (x2^6)$ \bigcirc 10–30% (x2⁵) $I_{\rm trigg} \, {\rm d}N/{\rm d}\rho_{\rm T}$ 0.10 O □ ◊ pp, √s = 13 TeV O → 30-50% (x2⁴) → 50-100% (x2³) □ 0-100% ● ■ ♦ pp, √s = 5.02 TeV 0.08 syst. uncorr. 1/(Δη Δφ) 1/N_{tr} 0 10 10 syst. 0.06 + stat. 0.04 Transverse to leading **Toward leading** $|\Delta \eta| < 1.2, -\pi/2 < \Delta \phi < 3\pi/2$ 10 $0.86 < |\Delta \eta| < 1.2, 0.96 < \Delta \phi < 1.8$ $|\Delta \eta| < 0.86, |\Delta \varphi| < 1.1$ 0.02 Ratio to 0-100% 1.5 10-1.0 ------6 7 8 0 8 0 8 0 6 5 6 7 p_ (GeV/c)

 p_{\perp} (GeV/c)

 $p_{_{T}}$ (GeV/c)

ALICE Collaboration, arXiv:2405.14511

... but (in-) and (out-of-)jet SE looks ~the same...

New classifiers

Spherocity

 $S_{\rm O}^{p_{\rm T}=1} = \frac{\pi^2}{4} \min_{\hat{n}} \left(\frac{\Sigma_i |p_{{\rm T},i} \times \hat{n}|}{N_{\rm trive}} \right)^2$

A measurement of the degree of collimation of the spray of particles:

- $S_0 \rightarrow 0$ very collimated jet-like topology
- $S_0 \rightarrow 1$ spherical event collective system?

Fixed multiplicity at mid-rapidity

 \hookrightarrow S_o is correlated to the $< p_T >$ of pions

Fixed multiplicity at forward rapidity:

⇒ S_0 is only mildly correlated to $<p_T>$, but more correlated to dN_{π}/dy

Livio Bianchi

QCDCppAA 3 Sep 2024

SE in HM VS Spherocity

19

23

ALICE Collaboration, J. High Energ. Phys. 2024, 184 (2024)

Fixed multiplicity at mid-rapidity

 \hookrightarrow High S₀ \rightarrow larger strangeness production

Fixed multiplicity at forward rapidity:

 \Rightarrow in this case S_o is not a good knob for strangeness

Flattenicity

$$\rho = \frac{\sqrt{\sum_{i=1}^{64} (N_{\rm ch}^{\rm cell,i} - \langle N_{\rm ch}^{\rm cell} \rangle)^2 / N_{\rm cel}^2}}{\langle N_{\rm ch}^{\rm cell} \rangle}$$

A measurement of the local multiplicity fluctuations in the VOM detector:

- $1-\rho \rightarrow 0$ high flattenicity large N_{MPI}
- $1-\rho \rightarrow 1$ small flattenicity small N_{MPL}

Flattenicity (which is mostly a multiplicity estimator) is able to deplete the high-pT bias

20

Flattenicity

... and the effect is reproduced by Pythia only with CR

Up for discussion

Wrap-up

- In the years strangeness enhancement is turning into a "less-common stuff" enhancement
 - connection to charm hadronization?
 - does strangeness retain a "higher status"? Probably not
- Multiple (multi-)strange hadron production VS VOM multiplicity
 - ratio of multiplet yields shows enhancing Λ/K_s^0 ratio and $2\Xi/4K_s^0$ decreases with multiplicity. Light quarks are playing a role! would coalescence calculations get these trends?
 - near future: several other ratios (e.g. SE at its extremes!)
 - CR junctions nicely re-connects strangeness with lighter quarks. Yet strangeness abundance remains a challenge. Does Rope actually help?
- In and out-of jet studies seem point to:
 - strangeness production dominance and spectra evolution only outside the jet
 - SE outside the jet and (potentially) same SE in the jet. Does this observation challenge the Core-Corona approach?
- New classifiers:
 - spherocity correlates to SE at fixed local multiplicity but not at fixed forward multiplicity
 - is this coming from its correlation to p₇? Despite this, we have a knob to tune strangeness at fixed multiplicity
 - \circ flattenicity aims at removing the high-p_ tias
 - current result hints at potential success. Larger statistics may help

Livio Bianchi

QCDCppAA 3 Sep 2024

Fix N_{ch} - SE VS Spherocity - Model comparison

Livio Bianchi QCDCppAA 3 Sep 2024

Fix VOM - no SE VS Spherocity - model comparison

Livio Bianchi QCDCppAA 3 Sep 2024 25

Not only we observe v_2 in small systems, but the **particle hierarchy** (in different p_{τ} regions) is the one that we expect from hydro and observe in Pb-Pb collisions

2d / (p + p) Thermal-FIST CSM (PLB 785 (2018) 171-174), T = 155 MeV 0.005 $-V_{\rm c} = {\rm d}V/{\rm d}y$ $V_c = 3 \, \mathrm{d}V/\mathrm{d}y$ Coalescence (PLB 792 (2019) 132-137) 0.004 Multiplicity Classes: V0A (Pb-side) for p-Pb V0M for pp and Pb-Pb 0.003 ALICE 0.002 pp, 7 TeV pp, 13 TeV Pb-Pb, 2.76 TeV 0.001 p-Pb, 5.02 TeV p-Pb, 8.16 TeV (Prel.) 10² 10^{3} 10 $\left<\mathrm{d}\mathrm{\textit{N}}_{\mathrm{ch}}\,/\,\mathrm{d}\eta_{\mathrm{lab}}
ight>_{\left|\eta_{\mathrm{lab}}
ight|<0.5}$ ALI-PREL-344619

d, ³He and ³H significantly enhanced throughout multiplicity!

What causes this enhancement? Lifting of canonical suppression? Coalescence probability at kinetic freeze-out?

Qualitative agreement with Thermal Canonical Statistical Model and coalescence model.

SE in HM VS Spherocity

Livio Bianchi QCDCppAA 3 Sep 2024

Forward energy anti-correlated to N_{MPI}

30

In pp collisions strangeness production is found to increase with midrapidity multiplicity and to be anti-correlated with the leading energy

Multi-differential approach to disentangle the contribution of multiplicity and effective energy to strange particle production:

- an increase in strange baryon production is observed at fixed midrapidity multiplicity
- strangeness production shows a correlation with the effective energy following a universal trend with the leading energy detected by the ZDC

