

Hadronization of heavy-quarks: open questions and perspectives

Mainly based on the review: Altmann et. al arXiv:2405.19137

Andrea Dubla

04/09/2024

Relevance of hadronisation

Hadronization is relevant:

- 1) In itself: how hadron are produced? Is it a universal process in e^+e^- , e^-p , pp, pA and AA?
- 2) **HQ transport properties** \rightarrow can affect estimates of $D_s(T)$: both $R_{AA}(p_T) \& v_n(p_T)$ affected
- 3) **QGP droplets**: infer properties of medium created in pp and/or pA
- 4) **Polarization**: underlying the interpretation for light hadrons, open HF and quarkonia
- 5) **Future physics program**: predictions for multi-charm production PbPb vs KrKr vs ArAr Relevance of HF Hadronization

How to: one way among many

To isolate FF: hadron-to-hadron production ratios are effective for probing hadronisation, PDFs and partonic cross sections cancel in the yield ratios

Charm baryons in e⁺e⁻

- > Charm baryons vs PYTHIA in e^+e^-
 - Standard PYTHIA with string fragmentation describe the experimental data

Hdronisation universality?

- Measurement of fragmentation fractions in pp collisions at LHC compared to e^+e^- (ep) collisions at lower \sqrt{s}
 - Indication that parton-to-hadron fragmentation depends on the collision system
 - Assumption of hadronisation universality not supported by the measured cross sections

 \rightarrow Independent fragmentation picture not valid in partonic-color-rich environment \rightarrow Break-down of hadronisation universality

How MC generators perform at LHC?

- **PYTHIA 8** with Monash tune and colour reconnection Eur. Phys. J. C74 no. 8, (2014) 3024
- HERWIG 7 where hadronisation is implemented via clusters Eur. Phys. J. C58 (2008) 639–707
- POWHEG matched to PYTHIA 6 to generate the parton shower JHEP 09 (2007) 126
- **GM-VFNS** pQCD calculations \rightarrow compute the ratios of the Λ_c and D⁰ cross sections Phys. Rev. D 101 (2020) 114021
- Fragmentation processes tuned on charm production measurements in e^+e^- collisions, $\rightarrow \Lambda_c/D^0 \sim 0.1$ mild p_T -dependence.
- Significantly underestimate the data at low p_{T} , while at high p_{T} the discrepancy is reduced

Can we explain the measured baryon enhancement?

PYTHIA 8 new Color Reconnection

> PYTHIA8 with String Formation beyond Leading Colour (CR-BLC)

Introduce new 'junction topologies for baryon enanchement'

 \succ

 \succ

SHM with additional baryon resonances

Statistical Hadronisation Model SHM+RQM

- production via statistical weights (scaling with mass)
- Feed-down from augmented set of charm-baryon states based on Relativistic Quark Model

□ PDG: 5 Λ_C (I=0), 3 Σ_C (I=1), 8 Ξ_C (I=1/2), 2 Ω_C (I=0) → missing baryons?! <u>RQM</u>: 18 extra Λ_C , 42 extra Σ_C , 62 extra Ξ_C , 34 extra Ω_C up to 3.5 GeV → supported by lattice PRD 84 (2011) 014025; PoS LAT. 2014 (2015) 084; PLB 737 (2014) 210

$n_i \; (\cdot 10^{-4} \; { m fm}^{-3})$	D^0	D^+	D^{*+}	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	Ω_c^0
PDG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0064
PDG(160)	0.4996	0.2223	0.2113	0.1311	0.1201	0.0304	0.0021
RQM(170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0144
RQM(160)	0.4996	0.2223	0.2113	0.1311	0.2203	0.0391	0.0044

Similar work performed for beauty hadrons and a similar effect is observed PRL 131 (2023) 1, 012301

Coalescence and its variations in pp

- Model with hadronization via coalescence+fragmentation
- Catania: Thermal spectra for light quark below 2 GeV/c and charm quark spectrum from FONLL
- **POWLANG**: Charm recombine locally with quarks & diquarks assumed thermally distributed + radial flow
- EPOS4@HQ: Similar to Catania but full realistic dynamics from ep, pp to AA

At $p_{T} \approx 0$, a charm quark only hadronize via coalescence, while at high p_{T} fragmentation becomes dominant

Baryon/meson ratio in pp

- CR Modes BLC in PYTHIA 8, SHM+RQM, Catania (and QCM) enhance the baryon yield and better describe the data
- > Do the model also describe measurements at forward rapidity?
 - Is there any obvious difference (parton density, heavy-quark density)?

A common trend for charm baryons

> For charm baryons with strange content the enhancement is even larger!

- Additional challenges from strange-quark production
- Coalescence is the model that gets consistently closer to data

Extremely good description of particle yield in the light flavour sector!

- Measured p_T-integrated yields of open charm mesons and J/Ψ midrapidity described by SHMc within uncertainties
 - Charm content determined by cross section and not by fireball temperature
 - Assume (full) charm quark thermalisation in the QGP
 - Charm quarks distributed to hadrons according to thermal weights

Yield of Λ_c baryons captured assuming an enhanced production of charmed baryons

Λ_{c} in Pb-Pb

- A_c/D⁰ in heavy-ion collision is higher at intermediate p_T wrt e⁺e⁻ and pp
 - Higher probability to hadronise via coalescence?
 - Radial flow?
 - An interplay of the two effect?

Λ_{c} in Pb-Pb

Possible rapidity dependence need further investigation - what do models predict?

 Λ_c/D^0 in heavy-ion collision is higher at intermediate p_T wrt e⁺e⁻ and pp

- Higher probability to hadronise via coalescence?
- Radial flow?
- An interplay of the two effect?

Baryon-to-meson ratio vs multiplicity

- > Baryon/meson ratios in pp collisions: different p_{T} trend depending on multiplicity
 - Larger baryon production at intermediate p_{T} with increasing multiplicity
- > No modification of p_{T} -integrated Λ_{c}/D^{0} as a function of multiplicity
- > Towards very low multiplicity would it be possible to reach the e^+e^- limit?

Baryon-to-meson ratio vs multiplicity

- > Baryon/meson ratios in pp collisions: different p_{T} trend depending on multiplicity
 - Larger baryon production at intermediate p_{T} with increasing multiplicity
- ➤ In the beauty sector the e⁺e⁻ limit is reached

Baryon-to-meson ratio vs multiplicity

- > No modification of p_{τ} -integrated Λ_{z}/D^{0} from pp to Pb-Pb
- > Towards very low multiplicity would it be possible to reach the e^+e^- limit?
- **Prospect:** measure Ξ_c and Ω_c baryons in heavy-ion collisions

The rapidity puzzle

- Recurrent picture: stronger enhancement at midrapidity than at forward rapidity
 → Possible trend to be revisited with Run 3 data (also in pp)
- > What should we expect in coalescence models and SHMc? Flat in rapidity?

More differential - correlations and jets

- > Near-side and away-side peak yields larger for $\Lambda_c^{}-h$ than D–h \rightarrow not described by PYTHIA
- > Impact of softer Λ_c fragmentation?
 - \rightarrow hints from Λ_c -tagged jets analysis: arXiv:2301.13798

SHM with beauty

- Y largely overestimated if 100% of beauty quarks assumed to be thermalized.
 - Does beauty quark reach thermal equilibrium
 - v₂ is compatible with zero

- Y described if 30% of beauty quarks assumed to thermalize.
 - Reach partial equilibrium?
 - Presence of currently unknown open beauty states will lead to a reduction of the bottomonia yields.

Beauty hadrons in Pb-Pb

> Full reconstruction of beauty hadrons will be at reach in Run 3-4

- Reconstruction of $\Lambda^0_{\ b} \rightarrow \Lambda^+_{\ c} \pi^-$ (BR = 4.9 10⁻³)
 - Will be affected by large uncertainties and limited to $p_{T} > 4-5$ GeV/c in Run 3 and Run 4
- Enhancement expected also for beauty-strange baryons

Loi: CERN-LHCC-2022-009

A new and challenging probe of QGP

- B_c⁺ production in heavy-ion collisions is an ideal probe to be sensitive both to dead cone effect and statistical recombination
 - CMS: used 2018 Pb-Pb data!
 - ALICE, LHCb: Possible first look with Run 3/4

Another window on coalescence

Relevance of coalescence in large systems? \succ

- $X(3872) \rightarrow$ form from suppression to enhancement? -
- Stress test with system size scan: $ep \rightarrow eA \rightarrow pp \rightarrow pO \rightarrow OO \rightarrow pA \rightarrow ArAr \rightarrow XeXe \rightarrow PbPb$

- Extension of measurements toward low p_{τ} is crucial
- Centrality dependence
- Further studies might shed light on the internal structure of these exoctic objects

Loi: CERN-I HCC-2022-009 H. Zhang et al., PRL 126(2021) 012301 B. Wu et al., EPJA 57(2021) 122

Multi-charm hadron states

- > Crucial new insight by measuring baryons containing multiple charm quarks ($\Xi_{cc}^{+}, \Xi_{cc}^{+}, \Omega_{cc}^{+}, \Omega_{cc}^{+},$
- Yields of multi-charm/single-charm hadrons predicted to be largely enhanced in A-A compared to pp collisions in SHM and coalescence models - production in single hard scattering disfavored
 - Direct window on hadron formation from QGP and unique testing ground for charm deconfinement and thermalisation

Conclusion

Hadronisation studied with heavy-flavour hadrons

- LHC data challenge the universality of hadronisation
- Clear signs of coalescence in open charm measurements (and in J/Ψ not shown today)
- Baryon enhancement present even at low mult. $pp e^+e^-$ limit in pp has been reached

Outlook:

- Short term goal: understanding the possible rapidity dependence, if any!
- > **Beauty**: need of precise measurements of hadrochemistry, p_{T} spectra for different hadrons
 - Accessible with precision with future large pp and Pb-Pb data samples
- > Multi-charm hadron, B_c , and exotica will 'soon' be at reach
 - They can open a new window for further testing coalescence and statistical hadronization

Thank you all for the attention

Hadronisation

Hadronisation in elementary reactions: the mechanism by which quarks and gluons produced in hard partonic scattering processes form hadrons

No first-principle description of hadron formation

- Non-perturbative problem, not calculable with pQCD
- Necessary to resort to models and make use of phenomenological parameters

Hadronisation of the QGP medium

- Transition from a deconfined medium composed of quarks, antiquarks and gluons to color-neutral hadronic matter

> Hadronization of QGP: is it different from e^+e^-/pp in which no thermalized partons are formed?

Fragmentation and coalescence

Independent fragmentation:

- Phenomenological functions to parameterize the *non-perturbative* parton-to-hadron transition $D_{q \rightarrow h}(z)$
- z is the fraction of the parton momentum taken by the hadron h
- Parameterized on data (e⁺e⁻) and assumed to be "universal"
- Event generators: string fragmentation

Fragmentation and coalescence

Independent fragmentation:

- Phenomenological functions to parameterize the *non-perturbative* parton-to-hadron transition $D_{n \rightarrow h}(z)$
- *z* is the fraction of the parton momentum taken by the hadron h
- Parameterized on data (e⁺e⁻) and assumed to be "universal"
- Event generators: string fragmentation

Coalescence/recombination:

- Single parton description is not be valid anymore
- No need to create $q\overline{q}$ pairs via string fragmentation
- Partons that are *"close" to each other in phase space* (position and velocity) can **recombine** into hadrons

Fragmentation and coalescence

Independent fragmentation:

- Phenomenological functions to parameterize the *non-perturbative* parton-to-hadron transition $D_{n \rightarrow h}(z)$
- z is the fraction of the parton momentum taken by the hadron h
- Parameterized on data (e⁺e⁻) and assumed to be "universal"
- Event generators: string fragmentation

Coalescence/recombination:

- Single parton description is not be valid anymore
- No need to create $q\overline{q}$ pairs via string fragmentation
- Partons that are *"close" to each other in phase space* (position and velocity) can **recombine** into hadrons

Coalescence vs. fragmentation:

- Competing mechanisms, dominant in different p_{T} regions
- **Recombination depends on "environment"**, i.e. density and momentum distribution of surrounding (anti)quarks

Baryon/meson ratio in pp

Baryon/meson ratio in pp

-

Multi-charm hadron states

- > Crucial new insight by measuring baryons containing multiple charm quarks $(\Xi_{cc}^{+}, \Xi_{cc}^{+}, \Omega_{cc}^{+}, \Omega_{cc}^{+})$
- Yields of multi-charm/single-charm hadrons predicted to be largely enhanced in A-A compared to pp collisions in SHM and coalescence models - production in single hard scattering disfavored
 - Direct window on hadron formation from QGP and unique testing ground for charm deconfinement and thermalisation

35

Baryon-to-meson ratio – beauty

- > First measurement of non-prompt charm-baryon production (|y| < 0.5) in pp and p-Pb collisions
- > Prompt and non-prompt Λ_c^+/D^0 ratio similar in both pp and p-Pb collisions
 - similar baryon-to-meson enhancement compared to e⁺e⁻

Modification of p_{T} distributions

> Coalescence of heavy quarks with light quarks from the QGP affects HF hadron momentum distributions

- HF hadrons pick-up the radial and elliptic flow of the light quark

Modification of p_{T} distributions

Nuclear modification factor **Elliptic flow** $R_{\rm AA}$ ^{>°} 0.35 ALICE PHSD PHSD w/o recomb. 0.30 Pb–Pb, $\sqrt{s_{NN}}$ = 5.02 TeV POWLANG --- POWLANG w/o recomb. Centrality 0-10% 0.25 1.2 Catania Catania w/o recomb. |y| < 0.50.20 1.0 0.15 0.8 0.10 0.6 0.05 0.4 0.00 Centrality 30-50% 0.2 -0.05E |y| < 0.8-0.10E 0.0 4×10⁻ 20 30 2 3 4 5 6 7 10 2 5678910 20 30 3 p_{\perp} (GeV/c) p_{τ} (GeV/c)

> Coalescence component is crucial to describe the data at low/mid p_{T}

🕞 🚍 🛖 Charm hadron yields - hydro approach

- > Cooper-Frye prescription + resonance decays at T_{fo} = 156.5 MeV
- > Expected deviation for Λ_c as in SHM w/o additional resonances
- > Deviation for J/ψ : primordial J/ψ at high p_T ?

Phys.Rev.D 108 (2023) 11, 116011

 D^0

40

Bottomonia states

Andrea Dubla

- Y largely overestimated if 100% of beauty quarks assumed to be thermalized.
 - Does beauty quark reach thermal equilibrium
 - v₂ is compatible with zero

CMS: PRL 120 (2018) 142301

- Y described if 30% of beauty quarks assumed to thermalize.
 - Reach partial equilibrium?
 - Presence of currently unknown open beauty states will lead to a reduction of the bottomonia yields.

41

Λ_{c} in Pb-Pb

