

Ideas related to testing coalescence

• An idea that can maybe work for both light and heavy flavour coalescence

We are also a mix of explorers and gold diggers

We are also a mix of explorers and gold diggers

Sometimes, we need to use our intuition and guess

General problem

- Many models especially after some time – can describe the same data
- Not even clear if discrepancies are problematic or just due to a necessary approximation

Transverse Spherocity S_o

Define the unweighted transverse spherocity: $S_0^{p_T=1} = \frac{\pi^2}{4} \min_{\hat{n}} \left(\frac{\sum_{tracks} |\hat{p}_T \times \hat{n}|}{N_{tracks}} \right)^2$

- Most other ALICE results were for the p_{T} -weighted S_{O}
 - We need this change because we study shortlived and neutral particles
 - Will call it S_0 in the following

The effect of S_o selection for different multiplicity estimators

Forward estimator Different region than where we measure S₀ Shown for top 10%. (typically used in ALICE to avoid autocorrelations)

- Physics we can address with S₀ depends on where we select the multiplicity
- The following results are all done with the mid-rapidity estimator
 - This ensures that multiplicity is almost constant so that we mainly select harder or softer events

Results top 1% multiplicity and top 1% S₀ (0.01% of events)

- Large differences between jetty and isotropic ratios ✓
- Events without S₀ selection are similar to isotropic
 - QGP-like effects dominates
 - Perfect liquid?
 - Hard physics is outlier
- Jet-like events
 - Radial-flow "peaks" are reduced
 - Strangeness is significantly reduced at high $p_{\rm T}$

Results top 1% multiplicity and top 10% S₀ (0.1% of events)

ALICE, JHEP 05 (2024) 184

- For top 10% we also have resonances (ϕ and K^{*0})
 - Require more statistics due to event mixing background
- Vs top 1%: effects are reduced but trends are the same

Strangeness enhancement vs S_o (top 1% multiplicity)

- We can control the strangeness enhancement with $S_0 \checkmark$
 - The effect is bigger for Ξ (S=2) than for Λ (S=1)
- Pythia ropes can describe the enhancement qualitatively

Strangeness enhancement vs S_o (top 1% multiplicity)

- EPOS LHC captures the trend
 - The QGP core is reduced in jetty events
- HERWIG has opposite trend?! (next slide)

Why Herwig is wrong

- Herwig produces a baryon enhancement by allowing 3 mesons close in phase space to form a baryon-antibaryon pair
 - But this will be more likely to happen in pencil-like events!
 - What about quark coalescence models?

Isotropic

- ϕ ($\approx s\bar{s}$) and Ξ (*ssd*) follows different trends
- Data and models agree

Several potential challenges to coalescence models

- Jetty events, which are here not defined with a pT cut, appears to be those where partons must be close in phase space
- But
 - No flow peak: p/pi flat vs pT
 - No strangeness enhancement
 - Different pattern for phi and Xi
- Problem: is there a generator implementation where we can test this?

Charm baryon production at very low multiplicity

Ratios vs pT

What is the limit at low mult?

- Can models explain this?
 - And why does it not approach e+e-?!
 - Unlike strangeness enhancement

Is strangeness suppressed in small systems or enhanced in large systems?

- Outline
 - Show some examples of "suppressed in small systems" data
 - Show some results on how Ξ is balanced by (anti)protons
 - Show some completely fresh results on balance in FIST

QCD challenges 2024 18

A purely statistical description of yields vs multiplicities

V. Vislavicius, A. Kalweit, arXiv:1610.03001

FIST Full canonical treatment

- V. Vovchenko,
- B. Dönigus,
- H. Stoecker , Phys.Rev.C 100 (2019) 5, 054906

FIST: canonical description (no γ_s)

Christiansen, Lund)

<u>d</u>

Peter's questions

FIST: canonical description (with γ_s)

How to kill Pythia: two lessons from CLASH

- 1. No chemical or thermal equilibration
 - Kinetic equilibration via shoving but never chemical or thermal
 - However, this IMO also challenges the QGP paradigm: where is the direct microscopic evidence for chemical/thermal equilibration?
- 2. Quarks and hadrons are mainly produced together: it is not possible to have a large phase-space separation of balancing quantum numbers
 - This goes against some of the claims of ALICE of longrange balancing of baryon number. However, these are IMO only indirect claims.

How to kill Pythia: two lessons from CLASH

- 1. No chemical or thermal equilibration
 - Kinetic equilibration via shoving but never chemical or thermal
 - However, this IMO also challenges the QGP paradigm: where is the direct microscopic evidence for chemical/thermal equilibration?
- Quarks and hadrons are mainly produced together: it is not possible to have a large phase-space separation of balancing quantum numbers
 - This goes against some of the claims of ALICE of longrange balancing of baryon number. However, these are IMO only indirect claims.

How to kill Pythia: two lessons from CLASH

- 1. No chemical or thermal equilibration
 - Kinetic equilibration via shoving but never chemical or thermal
 - However, this IMO also challenges the QGP paradigm: where is the direct microscopic evidence for chemical/thermal equilibration?
- 2. Quarks and hadrons are mainly produced together: it is not possible to have a large phase-space separation of balancing quantum numbers
 - This goes against some of the claims of ALICE of longrange balancing of baryon number. However, these are IMO only indirect claims.

Idea: look at the how the strange quarks are balanced

S

Ξ (Xi) baryon

QGP:

We naively expect that in a QGP the quarks will be deconfined and so eventually the quark pairs will drift apart in phase space.

Lund string: Most quarks and antiquarks are produced together during hadronization.

Part of the work of Jonatan Adolfsson's PhD Thesis

 He studied many combinations, see arXiv:2308.16706 (accepted by JHEP)

Focus on Ξ balanced by antiproton

 Requires at least <u>two mesons</u> to balance strangeness, e.g., 2K+ (u, sbar) => Balance requires min. 3 particles
 I think one would expect this should be suppressed in a small system because one could balance with 1 or 2 particles only

•

E balanced by antiproton: Monash

Normal Lund string and ropes: Ξ almost never balanced by antiproton but instead typically by antistrange baryons and even anti- Ξ !

Idea from CLASH workshop write up: J. Adolfsson et al, Eur. Phys. J. A 56 (2020) 11, 288, "QCD challenges from pp to A–A collisions"

E balanced by antiproton: Junction

Junction:

 Ξ balanced more by kaons and less by antistrange baryons. Broader correlations in rapidity.

Idea from CLASH workshop write up: J. Adolfsson et al, Eur. Phys. J. A 56 (2020) 11, 288, "QCD challenges from pp to A–A collisions"

Microscopic balance of Ξ by antiprotons: MB results

- EPOS (QGP) model: no structure due to extreme assumption of grand-canonical ensemble
- Pythia8 Monash: fails since this almost never happens
- Pythia8 Junctions: describes well the data

Microscopic balance of Ξ by antiprotons: low mult results

- Pythia8 Junctions: fails to describe the data since in the low multiplicity limit it must agree with Monash (no CR)
- But why does nature prefer such a complicated process where strangeness is balanced by two mesons?

New simulation results from this

ALICE, arXiv:2405.19890

- Extract balance function in FIST
- Use the same simulations as done in paper above. Trigger on Ξ (same|η| and pT cuts). No eta or pT cut on balancing particle.

Balance functions: 0-1% vs 40-50% pp 13 TeV

- No difference observed even if I calculate the ratio Ξ/K I get ~2 times difference.
 (|η|<0.8 and pT cut on Ξ but not on K)
 - -0.1%: 0.018173282
 - 40-50%: 0.0098870056

My comments

- Clearly too wide: correlation volume is too large to describe data
 - Is this a problem?
- But why does the balance not change: every time I create a Ξ I do it in the same way independent of system size...

(rad

Example: Ξ -K correlation functions

ALI-PREL-327510

Trigger on : Ξ (*ssd*)

Measure where balancing QN ends up: $K^+(u\bar{s}), \bar{p}(\bar{u}\bar{u}\bar{d}),$ $\bar{\Lambda}(\bar{u}\bar{d}\bar{s}), \bar{\Xi}(\bar{s}\bar{s}\bar{d})$

Subtract the uncorrelated production via the same QN correlations:

 $K^{-}(s\bar{u}), p(uud), \Lambda(uds), \Xi(ssd)$

