

Experimental overview on heavy-flavour measurements

Mattia Faggin - CERN

Universität Münster International Workshop "QCD challenges from pp to AA collisions" Track: "Energy loss and transport in the medium and in small systems"

Münster (Germany) 3rd September 2024

Heavy quarks: a unique probe for high-density QCD

2/22

pp collisions

Reference for Pb–Pb collisions

Test of pQCD calculations

- **Charm** and **beauty** quarks: $m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$
- Produced in hard scattering processes among partons
- Ultrarelativistic heavy-ion collisions at the LHC: quark-gluon plasma (QGP)
 - $\circ~$ state of matter expected in the first $\sim 10~\mu s$ after the Big Bang
 - heavy quarks experience the **full evolution** of the system

Charm- and **beauty- quarks dynamics** tested via **measurements** of **charm-** and **beauty- hadron production**

p-Pb collisions

Cold nuclear-matter effects

 Modification of parton distribution functions (PDFs) in bound nuclei

Hot nuclear-matter effects

- Energy loss in the medium
- Collective motion
- Hadronization modified in QGP

Charm and beauty hadronization from e⁺e⁻ to Pb–Pb

3/22

Hadronization: a key ingredient in all collision systems!

e⁺ e⁻ ● → ● ●

- "Point-like" object interaction
- **Fragmentation** in the vacuum

Fragmentation

- Hard scattering: $e^+e^- \rightarrow qq$
- Color string: $V_{Cornell}(r) \sim \kappa r$
- New qq pairs from multiple string breaking (confinement)

р What happens in pp collisions? Track *"Hadronization of light and heavy flavour* across collision systems"

- **QGP**: complex system with **partonic d.o.f**
- Hadronization can be influenced by coalescence and strangeness enhancement

Coalescence

- Heavy quark recombinates with light quarks in the QGP
- Expected increase of hadrons at intermediate-low $p_{\rm T}$
- QGP: interplay with fragmentation

The observables in Pb–Pb collisions

The observables in Pb–Pb collisions

5/22

1 Production spectra and *R*_{AA}

$$R_{\rm AA}(p_{\rm T}, y) = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{{\rm d}^2 N_{\rm AA}/{\rm d} p_{\rm T} {\rm d} y}{{\rm d}^2 N_{\rm pp}/{\rm d} p_{\rm T} {\rm d} y}$$

Anisotropic flow

$$v_{\rm n}(p_{\rm T}) = \langle \cos[{\rm n}(\varphi - \Psi_{\rm n})] \rangle$$

Low $p_{\rm T}$

- Elastic scatterings
- Diffusion via Langevin dynamics
- nPDF and shadowing

Intermediate $p_{\rm T}$

• Charm- and beauty-quark hadronization

High p_T

- Radiative *E*-loss
- Quark-mass and path length dependent *E*-loss

R_{AA} and v_2 compared to transport models

mfaggin@cern.ch

6/22

 $1.5 < 2\pi D_{\rm s} T_{\rm c} < 4.5 \iff \tau_{\rm charm} \simeq 3-8 \, {\rm fm}/c$

 TAMU: PRL 124, 042301 (2020)
 DAB-MOD: PRC 96, 064903 (2017)
 LBT: PLB 777 (2018) 255-259
 LIDO: PRC 98, 064901 (2018)
 Catania: PRC 96, 044905 (2017)

 POWLANG: EPJC 75 (2015) 3, 121
 PHSD: PRC 93, 034906 (2016)
 MC@sHQ: PRC 91, 014904 (2015)
 LGR: EPJC 80 (2020) 7, 671

2

ALI-DER-499016

12

 $2\pi D_c T_c$ at $T_c \approx 155$ MeV

Measured *R*_{AA} and *v*₂ compared to transport models to understand the relevant effects on charm-quark dynamics in QGP

• **Radiative energy loss** important to describe the results at **high** p_{T} , while it is less relevant at low p_{T}

ALICE: <u>IHEP 01 (2022) 174</u>

 TAMU: PRL 124, 042301 (2020)
 DAB-MOD: PRC 96, 064903 (2017)
 LBT: PLB 777 (2018) 255-259
 LIDO: PRC 98, 064901 (2018)
 Catania: PRC 96, 044905 (2017)

 POWLANG: EPJC 75 (2015) 3, 121
 PHSD: PRC 93, 034906 (2016)
 MC@sHQ: PRC 91, 014904 (2015)
 LGR: EPJC 80 (2020) 7, 671

Measured *R*_{AA} and *v*₂ compared to transport models to understand the relevant effects on charm-quark dynamics in QGP

- Radiative energy loss important to describe the results at high p_{T} , while it is less relevant at low p_{T}
- Hadronization via coalescence important to describe the results at low and intermediate p_{T}

ALICE: <u>JHEP 01 (2022) 174</u>

 TAMU: PRL 124, 042301 (2020)
 DAB-MOD: PRC 96, 064903 (2017)
 LBT: PLB 777 (2018) 255-259
 LIDO: PRC 98, 064901 (2018)
 Catania: PRC 96, 044905 (2017)

 POWLANG: EPJC 75 (2015) 3, 121
 PHSD: PRC 93, 034906 (2016)
 MC@sHQ: PRC 91, 014904 (2015)
 LGR: EPJC 80 (2020) 7, 671

Beauty-quark dynamics from non-prompt D mesons

ONS mfaggin@cern.ch 9/22

Beauty-quark hadronization from B mesons R_{AA}

 R_{AA} of B_s^0 (bottom-strange) and B_c^+ (bottom-charm) larger than that of other B mesons at intermediate p_T

- B_s⁰: coalescence between b-quark and s-quark from the QGP
- B_c^+ : **recombination** between **c-quark and b-quark**, despite they are not thermally produced?
 - B_c^+ : new particle to study the interplay between enhancement (hadronization at intermediate p_T) and suppression (*E*-loss at high p_T)

Beauty-hadron flow from non-prompt D-meson v_2

5

ATLAS: PLB 807 (2020) 135595

6 7 8 910

²⁰ р_т [GeV]

- **Flow larger than 0** for **non-prompt D**⁰ mesons (ALICE: 2.7σ)
 - Indication of strong interaction of b-quark with the QGP
- v_2 lower than that of prompt D mesons (ALICE: 3.2 σ)
 - Different degree of participation to the QGP collective motion between charm and beauty quarks
 - Consistent with the expectation of a **weaker interaction** for b-quark than c-quark

Heavy-strange-meson production

12/22

D_s⁺ enhancement in high-multiplicity p–Pb collisions

- Significant increase vs. multiplicity of prompt D_s⁺/D⁺ ratio in p-Pb collisions
 more pronounced for backward collisions
- In line with a scenario including hadronization via **coalescence** and **strangeness enhancement** in **high-multiplicity p–Pb** collisions

Elliptic flow measurements in pp collisions

CMS: Phys. Lett. B 813 (2021) 136036

- Prompt $D^0 v_2$ in **pp collisions** at $\sqrt{s} = 13$ TeV measured by the CMS Collaboration
- Hint of $v_2(D^0) > 0$ in $2 < p_T < 4 \text{ GeV}/c (\sim 2.7\sigma)$

- → Collectivity in small systems?
- → Influence of *non-flow effects* (initial-state effects, jets, resonance decays, ...) ?

"Collectivity in high-energy pp collisions" Y. Zhou, SQM 2024 (<u>link</u>)

Nuclear modification factor of Λ_c^+ baryon

15/22

• Hint of $R_{AA}^{\text{central}}(\Lambda_{c}^{+}) < R_{AA}^{\text{peripheral}}(\Lambda_{c}^{+}) \rightarrow \text{sensitivity to different system size and energy density}$

- Minimum value of $R_{AA}^{central}(D^0)$ at around $p_T = 6-8 \text{ GeV}/c$, which is lower than that of $R_{AA}^{central}(\Lambda_c^+)$
- Hint of hierarchy $R_{AA}(\Lambda_c^+) > R_{AA}(D_s^+) > R_{AA}(non-strange D)$ for $4 < p_T < 12 \text{ GeV}/c$ in most central collisions
 - Indication of larger enhancement for baryons due to **coalescence**
 - Interplay with **radial flow**?

16/22

Λ_{c}^{+}/D^{0} ratio in Pb–Pb collisions

- Λ_c^+/D^0 baryon-to-meson ratio <u>*at midrapidity*</u> significantly higher (ALICE: 3.7 σ) in central Pb-Pb collisions than in **pp** collisions in the interval $4 < p_T < 8 \text{ GeV}/c$
 - Measurement in central Pb-Pb collisions described by **transport models** with **recombination**
- No significant collision-system and centrality dependence for $p_{\rm T} > 12 \text{ GeV/c}$ • $h_{\rm C}^+$ $h_{\rm C}^+$ $h_{\rm C}^+$ $h_{\rm C}^+$ $h_{\rm CMS: arXiv:2307.11186 [nucl-ex]}$

Charm-baryon production at the LHC - open points (1/2)

mfaggin@cern.ch

e

LHCb: [HEP 06 (2023) 132

LHCb: https://arxiv.org/abs/2305.06711

17/22

- Baryon-to-meson ratio at midrapidity compatible in pp and p–Pb collisions \rightarrow hint of larger Ξ_c^0/D^0 in p–Pb collisions at $p_T > 4$ GeV/c
- Baryon-to-meson ratio at forward rapidity systematically lower than those at midrapidity across collision systems
 - influence of different parton and/or heavy-flavour quark densities in different rapidity ranges?

Charm-baryon production at the LHC - open points (2/2)

mfaggin@cern.ch 18/22

- No significant dependence vs. multiplicity of the p_{T} -integrated Λ_{c}^{+}/D^{0} ratio at mid-y across collision systems
- Ratio described by Catania (fragmentation + coalescence) and TAMU (SHM+RQM + 4-momentum conserving coalescence in Pb–Pb)
- PYTHIA 8 CR-BLC prediction does not reproduce the trend vs. multiplicity in pp collisions

 \rightarrow Is the p_{T} -differential Λ_{c}^{+}/D^{0} enhancement just a consequence of radial flow and recombination?

Charm-baryon production at the LHC - open points (2/2)

- No significant dependence vs. multiplicity of the $p_{\rm T}$ -integrated Λ_c^{+}/D^0 ratio across collision systems
- Significant dependence versus multiplicity of the *p*_T-integrated Λ_b⁰/B⁰ ratio at forward-*y* in pp collisions
 o increase of about a factor 2 from low to high multiplicity

→ Influence of different parton and/or heavy-flavour quark densities in different rapidity ranges? → Is the $p_{\rm T}$ -differential Λ_c^+/D^0 enhancement just a consequence of radial flow and recombination?

mfaggin@cern.ch

19/22

Charm-baryon production across collision systems

mfaggin@cern.ch

20/22

Baryon enhancement in all collision systems at the LHC compared to e⁺e⁻

- D mesons: $\downarrow \downarrow \downarrow \times 1.4$ -1.6 with respect to e^+e^-
- Λ_c^+ baryon: $\uparrow\uparrow\uparrow X \sim 3$ with respect to e^+e^-
- No significant system dependence of charm fragmentation fractions

Modification of hadronization mechanisms already in pp and p-Pb collisions, i.e. without QGP formation?

> Track "Hadronization of light and heavy flavour across collision systems"

ALI-PUB-570972

Food for thinking ...

21/22

... actually, just an unsatisfactory appetizer ...

Experiment vs. theory

- **Direct beauty** measurement **more challenging** that **non-prompt charm** (at least fro ALICE)
- **Do we really gain** in physics knowledge by measuring beauty hadrons rather than non-prompt charm?
 - decay kinematics non trivial? (e.g. polarization)

Future experiments

- Increase of statistics and acceptance (e.g. ALICE 3 up to $|\eta| < 4$)
- Possible measurements: DD correlation, ... what else?!
- Can larger acceptance detectors be useful for other observables (e.g. hadronization vs. rapidity)?

ALICE 3 LOI: <u>CERN-LHCC-2022-009</u>

22/22

The end

Backup

Charm and beauty hadronization from e⁺e⁻ to Pb–Pb

- "Point-like" object interaction
- **Fragmentation** in the vacuum

Fragmentation

- Hard scattering: $e^+e^- \rightarrow \overline{q}q$
- Color string: $V_{Cornell}(r) \sim \kappa r$
- New qq pairs from multiple string breaking (confinement)

Hadronization: a key ingredient in all collision systems!

• **QGP**: complex system with **partonic d.o.f**

 Hadronization can be influenced by coalescence and strangeness

enhancement

Coalescence

- Heavy quark recombinates with light quarks in the QGP
- Expected increase of hadrons at intermediate-low $p_{\rm T}$
- QGP: interplay with fragmentation

Charm and beauty hadronization from pp collisions

25/22

- Superposition of many "e⁺e⁻" collisions
- Changes in hadronization due to the surrounding color charges and those from MPI?
- Do the model calculations based on the factorization approach describe the experimental results?

<u>A. Rossi</u>, Monday at 10:10 *"Heavy-quark production and hadronisation as a function of event multiplicity with ALICE"* This talk: more focused on results in heavy-ion collisions

Spatial diffusion coefficient

26/22

Constraining the spatial diffusion coefficient via the data-to-model agreement

 \rightarrow Using R_{AA} (with $\chi^2/\text{ndf} < 5$) and v_2 (with $\chi^2/\text{ndf} < 2$) non-strange D measurements

```
\rightarrow TAMU, MC@sHQ, LIDO, LGR, and Catania "selected"
```


28/22

Prompt Ds+

mfaggin@cern.ch

29/22

ALICE: https://arxiv.org/pdf/2210.10006.pdf

30/22

31/22

ALI-PUB-534213

32/22

33/22

ALI-PUB-545132

35/22

E-loss and transport models

2	7	1	2	2
J	/	/	4	4

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
CUJET 3.1	\checkmark	\checkmark	×		\checkmark
DREENA-A	\checkmark	\checkmark	×	\checkmark	×
SCET _{M,G}	\checkmark		×	×	

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU	\checkmark	×	\checkmark	\checkmark	\checkmark
LIDO	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PHSD	\checkmark	×	\checkmark	\checkmark	\checkmark
DAB-MOD	\checkmark	\checkmark		\checkmark	×
Catania	\checkmark	×	\checkmark	\checkmark	\checkmark
MC@sHQ+EPOS	\checkmark	\checkmark		\checkmark	\checkmark
LBT	\checkmark	\checkmark		\checkmark	\checkmark
POWLANG+HTL	\checkmark	×	\checkmark	\checkmark	\checkmark
LGR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

But more importantly: different implementations and input parameters.

The observables in Pb-Pb collisions

38/22

1 Production spectra and R_{AA}

² Anisotropic flow

3 ... and particle ratios!

$$R_{\rm AA}(p_{\rm T}, y) = \frac{1}{\langle T_{\rm AA} \rangle} \frac{{\rm d}^2 N_{\rm AA}/{\rm d} p_{\rm T} {\rm d} y}{{\rm d}^2 \sigma_{\rm pp}/{\rm d} p_{\rm T} {\rm d} y}$$

$$v_{\rm n}(p_{\rm T}) = \langle \cos[{\rm n}(\varphi - \Psi_{\rm n})] \rangle$$

$$R_{\rm AA}(p_{\rm T}, y) = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{{\rm d}^2 N_{\rm AA}/{\rm d} p_{\rm T} {\rm d} y}{{\rm d}^2 N_{\rm pp}/{\rm d} p_{\rm T} {\rm d} y}$$

39/22

Heavy-strange-meson production

Sensitivity to **coalescence** and **strangeness enhancement**

- 1. hint of $R_{AA}(D_s^+) > R_{AA}(\text{non-strange D})$ at intermediate p_T
- 2. v_2 described by models including charm-quark coalescence with strange quarks flowing in the QGP
- 3. D_s^+/D^0 ratio in Pb-Pb collisions higher than that in pp collisions of about 2.3-2.4 σ at intermediate p_T

Charm-baryon production at the LHC - open points (2/2)

Baryon enhancement in all collision systems at the LHC compared to e⁺e⁻

- No significant dependence versus multiplicity of the $p_{\rm T}$ -integrated $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ ratio across collision systems
- Ratio described by Catania (fragmentation + coalescence) and TAMU (SHM+RQM + 4-momentum conserving coalescence in Pb-Pb)
- PYTHIA CR-BLC prediction does not reproduce the trend vs. multiplicity in pp collisions
- → Is the p_{T} -differential Λ_{c}^{+}/D^{0} enhancement just a consequence of radial flow and recombination?

40/22

Charm-baryon production at the LHC - open points (2/2)

- No significant dependence versus multiplicity of the $p_{\rm T}$ -integrated $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ ratio across collision systems
- Ratio described by Catania (fragmentation + coalescence) and TAMU (SHM+RQM + 4-momentum conserving coalescence in Pb–Pb)
- PYTHIA 8 CR-BLC prediction does not reproduce the trend vs. multiplicity in pp collisions

 \rightarrow Is the $p_{\rm T}$ -differential Λ_c^+/D^0 enhancement just a consequence of radial flow and recombination?

@cern.ch

41/22

mfaggin