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Aleksas Mazellauskas:
Event properties and hydro in small and large

systems

How many particles make a fluid?

Sorites (‘heap’) paradox:
If n grains of sand is a heap, then n—1 is also a heap
= a single grain of sand is a heap?

Duck test:
If it looks like a duck, swims like a duck,
and quacks like a duck, then it probably is a duck.

Can a few-particle system behave like a fluid?
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Aleksas Mazellauskas:
Event properties and hydro in small and large

systems

QGP passes the “Duck test” as a near perfect fluid in large systems,
but there are many challenges to interpretation in small systems
* Matching to microscopic dynamics (not discussed)
— see talks by Victor and Nicolas
* Systematic uncertainties in transport of hydrodynamics
— 1/, but of which hydrodynamics?
* Missing contributions of thermal noise
— why does average hydrodynamics work so well?
* Sorites paradox
— what can we learn from mesoscopic cold atom systems?
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Mihai Petrovici
An overview on some global trends observed in heavy ion collisions based on experimental
results from AGS up to LHC energies and on similarities between pp and Pb-Pb collisions at

LHC
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* Blast wave description of pp and p-Pb spectra
* Description of AA collisions via entropy density: P PP P P

some patterns may appear
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Strangeness: core-corona description to separate two dynamics

MB
— Nparf [( fcore)Mg)p +fcoreMcore]
i
JPE T RAREERARAY RARSS
§Pb-Pb276TeV - T
F - u
0P @ o ' w45
E [ . P, & . & &
10 & ox® ]
> E L [y
B ®©
= e
b 17_ —
| ]
L Ll w
-1 —
10 E " Bt K eP -A
W =0 =Z =Q
-2 -
10 T FUTTE PR PR PETEE PR PR PR
0 50 100 150 200 250 300 350

(N par?

open symbols - Eq.1
full symbols - exp. points

0

ratio to 7
W)

M. Petrovici et al., Phys.Rev. C96(2017)014908

core fraction

0.5

- EPOS 3.210 ALICE (black)
T x.!-‘-’o—u.*f'_.-.m.- -
= J
i
i full
C
. csse cgr(ﬁ?a thin lines = pp (7TeV)
., “ O thick Tincs = PbPD @ oTevvey
oppat . (XX’ 00 C €s = €
- e £~..'”” circles = pp (7TeV)
e squares = 1;))Pb (5TeV)
- stars = PbPb (2.76TeV)
C L1 HI‘ L1 II|2 \IH|3
1 10 10 10
<dn_ /dn(0)>
K. Werner, SOM 2017, July 10-15 2017, Utrecht
L EPOS 4.0.0
i .—.—.‘.—._
L .‘.4
i " PbPb
- -/.,
B < PP
B /
.’.
.—'f\I\HJll | IIIIII\|21 IHHIII3I
1 10 10 10
<dn_ /dn(0)>

K. Werner, Phys.Rev. C109(2024)014910

QCD Challenges - Miinster - 2024

ALICE



Intrinsic initial geometry dependence

Lucia Tarasovicova
Flow measurements from large to small systems

Po’
Nature Phys. 15 (2019) 214-220, 2019
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e Applicability of hydro to small
systems questionable ?

* Different outcomes from
different experiments (PHENIX,
STAR): important to perform
detailed test with
theory/experiment integration
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Flow in events with jets

Phys. Rev. Lett 131 (2023) 162301
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Down to the smallest systems - yPb
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* New set of measurements performed by ATLAS in gamma-Pb collisions

Phys. Rev. C. 104 (2021) 014903
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* Events further selected in charged-particle multiplicity

* Multiplicity larger than min-bias pp: likely hadronic environment “again”
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e vector meson (p) — Pb collision - same signatures as p-Pb not surprising
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Flow measurement within a jet

138 fb™! (pp 13 TeV)
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® v, measured inside jets, in coordinates w.r.t. jet axis

® Short range correlations ~1/Ng .
® Observed up to 8o and described by models
® Deviations at larger jet multiplicities

® 50 deviation from models

® Indication of an onset of novel QCD phenomena related
to non-perturbative dynamics of a parton fragmenting in
the vacuum? v

| \ Ll
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* \ery extreme jet selection: still reliable?
* Follow-up needed. From hadronization group: study jet substructure to know if this is reasonable?
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Victor Ambrus
Applicability of hydrodynamics in large and small systems
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» Naive hydro, initialized with same ¢y as RKT at 79 = 0.4-1 fm/c underestimates
e, and overestimates dEy, /dn.

» Scaled hydro is in perfect agreement at large 4 but loses applicability as 4 < 3—4.

o
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Regime of applicability of hydrodynamics
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» Transverse expansion sets in at Tgxp ~ 0.2, independent of opacity.

» Hydro applicable when Re™" < 0.75. %

» When 4 < 3, hydrodynamization is interrupted by transv. expansion. T ALICE



Hydrodynamics in real collision systems

What does the criterion 4 2 3 imply for the applicability of hydro to realistic
collisions?
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hydrodynamic behaviour in all but peripheral collisions

30 / 32

Oxygen-oxygen is
especially interesting:
the onset of
applicability of hydro

What does this mean

experimentally? %
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Nicolas Borghini:

Statistical description of the Initial state fluctuations and mode-by-mode dynamical

PbPb: 0-2.5%
V5 =5.02 TeV

&
2
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=
100 %

Hydro simulation of average
state plus one mode at a
time

Calculate medium response
to IS fluctuation

evolution

1% A random initial state may be seen as a random fluctuation about
this average state:

| d)(x) = ¥(x) + 68V (x)

The goal is now to characterize the fluctuating parts {§®(9(x)}.

Pb-Pb at 5.02 TeV, 0-2.5% centrality
(nucleon-based MCGlauber, fixed impact-parameter direction)
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Influence of individual fluctuation
modes on “observables”

Qa,ll
2

Oa (Ej + €qjl) = Oa(‘i}) + La,l£ + 62 + 0(63)
Pb-Pb at 5.02 TeV, 0-2.5% centrality; linear-response coefficients L, ;
at the end of MUSIC (+ decays).

Initial state Final state

#

Nice correspondence, e.g. €, c/s == VUp, /s X Ep c/s
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Questions / Ideas / Outlook

@ How does the statistical analysis of initial-state fluctuations help?
@ (Dream?) To define a distance between initial-state models?

@ From the response coefficients, one can compute the (co)variances
[] L] . 2
of observables (e.g.: with linear coefs, covariances at order ¢;)

@ Extensions

® Other systems (e.g.: B.Bachmann, MSc thesis on Ru+Ru vs. Zr+Zr
at 200 GeV)

® More final-state observables (Dream: “golden observables”, due to
very few modes 1= reverse engineering)
® Going 3D; adding conserved charges

® Inclusion of further effects in toy hot-spot model
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Causality conditions as constraints in hydrodynamics

Renata Krupczak

Calculating the percentage of acausal energy

Em'uusul/Eh)f ((/)

Small fraction of acausal energy in Pb-Pb
But more significant in p-Pb and smaller systems
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Effect of acausality in (some) final-state observables

4. Validation Through Simulations

No Impact on final observables
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Not very significant in
primary observables (N,
mean py)

More significant effects in
other observables?
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Effect of acausality in QGP property extraction in bayesian analysis

Specific shear viscosity posterior

Specific bulk viscosity posterior
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Broader questions In the hydro track

o Flow inside a single jet and the CMS measurement

o Very extreme measurement, substructure could be studied for sanity
o Speed of sound: use of extreme centrality selections to probe system properties directly
o Expanding and characterising the initial state and response to it

o “Fundamental” variables vs “detailed” variables: dependent on a few modes vs dependent
on one very specific (potentially higher order) mode

o Extremely small: proton-proton system and hydrodynamics (“the duck test” scenario)
o What about UPC?
o Applicability of hydro: may not be valid but “so what”?
o Oxygen-oxygen: Which observables to look at?
o Kinetic theory versus hydro and how they map into one another
o Extremely important: integration between theory and experiment to overcome difficulties in

comparisons
Thank youl! %

o ALICE 3 and eta acceptance: what does that stand to teach us?
ALICE
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