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QGP in the laboratory

[Venaruzzo, PhD Thesis, 2011]

▶ Bjorken coordinates:
τ =

√
t2 − z2;

η = tanh−1(z/t).
▶ Ultra-relatistic heavy-ion collisions

(√sNN = 5.02 TeV PbPb)
deposit dE⊥/dη ∼ 1280 GeV.

▶ Due to rapid longitudinal
expansion, the QGP cools,
reaching kBT ∼ 350 MeV
at τ ≃ 1 fm/c.
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Bjorken model

[A. Monnai, PhD Thesis (Tokyo, 2014)]

Nuclear collision model:
▶ Initial state: Colour glass condensate
▶ Early stage: Glasma?
▶ Onset of QGP
▶ Hadronisation
▶ Freeze-out
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Hadronic Collisions in Experiment

Figure (cropped): CMS Collaboration PLB 724 (2013) 213;

PbPb √
sNN = 2.76 TeV

▶ Correlation peak at (∆ϕ, ∆η) = (0, 0) due to jet fragmentation.
▶ Bands at ∆ϕ = 0 (near-side) and π (away-side) are due to elliptic flow,

∼ cos(2∆ϕ).
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Transverse plane observables
[CMS webpage]

▶ The overlap region between the colliding
nuclei also expands in the transverse plane.

▶ The strong coupling of the QGP leads to
hydrodynamic-like behaviour.

▶ Initial eccentricities ϵn lead to
momentum-space anisotropies,
characterized by flow harmonics vn.

▶ v2 ≡ elliptic flow was one of
the first exp. signatures
for the formation of the QGP
medium.

[CMS webpage]
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Standard modelling of heavy ion collisions

▶ Shortly after the collision, the system is in a
far-from-equilibrium state.

▶ Pre-equilibrium dynamics require a non-equilibrium
description.

▶ Strongly-interacting QGP leaves imprints of
thermalization and collectivity in final-state
observables:

vn, ⟨pT ⟩, particle yields, ...
▶ Large systems (A + A) equilibrate quickly and

hydrodynamics becomes applicable.
▶ For small systems (p + A, p + p), a similar argument

undisputedly holds is hard to digest...
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Small systems

Very dilute, hydrodynamics not necessarily applicable
▶ still collective behaviour is observed!

Nagle, Zajc Ann.Rev.Nucl.Part. 68 (2018) 211

Collectivity can also be explained in kinetic theory, a mesoscopic
description which does not rely on equilibration.
▶ KT interpolates between free streaming at small opacities

and hydrodynamics at large opacities!
Aim

Benchmarking of hydro for transverse flow observables w.r.t. kinetic theory for
a simplified (conformal) fluid on full range from small to large system sizes.
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Eccentricities and harmonic response

Transverse plane profiles with cos(nφ) eccentricities:

(no ecc.) (n = 2) (n = 3) (n = 4)

Inhomogeneous transverse gradients ⇒ inhomogeneous flow:

⇒ ⇒
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KT: Model and setup
▶ Mesoscopic description in terms of averaged on-shell phase-space distribution:

f(τ, x⊥, η, p⊥, y) = (2π)3

νeff

dN

d3x d3p
(τ, x⊥, η, p⊥, y),

describing massless bosons with νeff = 2(N2
c − 1) + 7

8 × 4NcNf → 42.25
▶ Time evolution is described via the Boltzmann eq. in conformal RTA:

pµ∂µf = CRTA[f ] = −pµuµ

τR
(f − feq), feq = 1

epµuµ/T − 1
.

▶ We take η/s = const, while τR is related to η/s via

τR = 5η

sT
. (1)

▶ We assume boost invariance ⇒ f depends only on y − η.
▶ Parametrizing f ≡ f(τ, x⊥; p⊥, vz), with vz = tanh(y − ηs) = τpη/pτ , we have

∂f

∂τ
+ v⊥ · ∇⊥f − vz

τ
(1 − v2

z) ∂f

∂vz
= − 1

τR
(f − feq). (2)
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KT: Initial state
▶ At τ0, we take

f(τ0, x⊥; p⊥, vz) = (2π)3

νeff

δ(vz)
τ0p⊥

dN0

d2x⊥d2p⊥dη
. (3)

▶ We further assume f(τ0) depends only on |p⊥| (no transverse anisotropies) and

dN0

d2x⊥d2p⊥dη
= F

(
Qs(x⊥)

p⊥

)
, (4)

where F is some function of the ratio of the momentum scale Qs(x⊥) and p⊥
satisfying

ϵ(τ0, x⊥) = 1
τ0

∫
d2p⊥p⊥

dN0

d2x⊥d2p⊥dy
. (5)

▶ T µν =
∫

p pµpνf is initialized as [
∫

p
≡ νeff

(2π)3
√

−g
∫

d3p/pτ ]

T µν
0 = ϵ0(x⊥) × diag(1, 1/2, 1/2, 0),

i.e. the longitudinal pressure vanishes, PL(τ0) = 0.
▶ ⇒ system evolution depends only on ϵ0(x⊥) and opacity γ̂.
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System opacity γ̂

▶ The system evolution depends only on the opacity ∼ “total interaction rate”
Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

γ̂ =
(

5η

s

)−1
(

1
aπ

R
dE

(0)
⊥

dη

)1/4

, a = π2

30 νeff .

γ̂ encodes dependencies on viscosity , transverse size and energy scale, with

dE
(0)
⊥

dη
=
∫

x⊥

τ0ϵ0, R2 dE
(0)
⊥

dη
=
∫

x⊥

τ0ϵ0x2
⊥.

▶ We take as initial condition the 30 − 40% centrality-class
average of Pb+Pb at 5.02 TeV ⇒ R ≃ 2.78 fm and
dE

(0)
⊥ /dη = 1280 GeV

Borghini, Borrell, Feld, Roch, Schlichting, Werthmann PRC 107 (2023), 034905

For a fixed initial profile, γ̂ can be varied via η/s:

γ̂ ≈ 11
4πη/s

.

30-40%
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Hydro setup
▶ In hydro, the system is described directly by the energy-momentum tensor,

T µν = ϵuµuν − P∆µν + πµν , ∆µν = gµν − uµuν .

▶ Energy-momentum conservation ∂µT µν = 0 entails

ϵ̇ + (ϵ + P )θ − πµνσµν = 0,

(ϵ + P )u̇µ − ∇µP + ∆µ
λ∂νπλν = 0,

where θ = ∂µuµ and σµν = ∇⟨µuν⟩,1 with ∇µ ≡ ∆α
µ∂α.

▶ In MIS viscous hydro, πµν evolves according to

τππ̇⟨µν⟩ + πµν = 2ησµν + 2τππ
⟨µ
λ ων⟩λ − δπππµνθ − τπππλ⟨µσ

ν⟩
λ + ϕ7π⟨µ

α πν⟩α,

where ωµν = 1
2 [∇µuν − ∇νuµ] is the vorticity tensor.

▶ The transport coefficients are chosen for compatibility with RTA:
[Ambrus,, Molnár, Rischke, PRD 106 (2022) 076005]

η = 4
5τπP, δππ = 4τπ

3 , τππ = 10τπ

7 , ϕ7 = 0, τπ = τR.

▶ Numerical solution obtained using vHLLE. [Karpenko, Huovinen, Bleicher, CPC 185 (2014) 3016]

1A⟨µν⟩ = ∆µν
αβ

Aαβ , ∆µν
αβ

= 1
2 (∆µ

α∆ν
β + ∆µ

α∆ν
β) − 1

3 ∆µν∆αβ .
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0 + 1-D conformal Bjorken flow
▶ At early times (τ ≪ R), transverse dynamics are irrelevant and

T µ
ν =diag(e, −PT , −PT , −PL),

πµ
ν =πd × diag

(
0, 1

2 , 1
2 , −1

)
, (6)

such that PT = P − 1
2 πd and PL = P + πd.

▶ Under MIS hydro, ϵ and πd evolve according to

τ
∂ϵ

∂τ
+ ϵ + PL =0, τ

∂πd

∂τ
+
(

λ + τ

τR

)
πd + 4η

3τR
=0, (7)

where λ = (δππ + 1
3 τππ)/τπ = 38/21 for compatibility with RTA.

▶ It is convenient to employ the conformal scaling parameter

w̃ = 5τ

4πτR
= τT

4πη/s
⇒ τ

dw̃

dτ
= w̃

(
2
3 − fπ

)
. (8)

▶ Then, the function fπ = πd/ϵ obeys a closed-form differential equation:

w̃

(
2
3 − fπ

4

)
dfπ

dw̃
+
(

λ − 4
3 + 4πw̃

5 − fπ

)
fπ + 16

45 = 0, (9)

showing that fπ ≡ fπ(w̃).
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Attractor solution
▶ Free-streaming fixed point (around w̃ = 0):

fπ(w̃ ≪ 1) = fπ;0 + fπ;1w̃ + . . . (10)

▶ fπ;0 and fπ;1 are independent on ICs, but depend on the theory:

fHydro
π;0 ≃ −0.4, fRKT

π;0 = 1
3 . (11)

▶ The value of fπ;0 influences PL/PT at early time:

PL

PT
= 1 + 3fπ

1 − 3
2 fπ

−−−→
w̃→0

{
−0.13, Hydro,

0, RKT.
(12)

▶ Hydro fixed point (around w̃−1 = 0)

fπ(w̃ ≫ 1) = − 4
9πw̃

, (13)

which is independent of ICs and of theory.
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Hydro vs Kinetic theory
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[Ambrus,, Bazzanini, Gabbana, Simeoni, Succi,
Nature Comput. Sci. 2 (2022) 641]

▶ Regularity at w̃ = 0 selects the attractor.
▶ Hydro employed in HIC modelling, but it breaks down far from eq.
▶ Kinetic theory overcomes this limitation, but realistic simulations are expensive

due to C[f ]. AMPT: He, Edmonds, Lin, Liu, Molnar, Wang [PLB 753 (2016) 506]
BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]

▶ RTA is 1 − 2 o.m. faster than BAMPS. VEA, Busuioc, Fotakis, Gallmeister, Greiner [PRD 104 (2021) 094022]
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Energy attractor
▶ Taking τ4/3ϵ(τ) = (τ4/3ϵ)∞E and switching to w̃, energy conservation implies

w̃

(
2
3 − fπ

4

)
dE
dw̃

+ fπE = 0. (14)

▶ E ≡ E(w̃) when fπ is a function only of w̃.
▶ The normalization is such that at late times,

E(w̃ ≫ 1) = 1 − 2
3πw̃

, (15)

independent of theory.
▶ At early times (w̃ ≪ 1), we have

E(w̃) = C−1
∞ w̃γ , γ = 12fπ;0

3fπ;0 − 8 =
{

0.526, Hydro,

4/9, RTA,
(16)

with C∞ ≃ 0.88 (RTA) and 0.80 (hydro).
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Attractor curves
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▶ KT and hydro disagree far from
equilibrium.

▶ Noneq. effects can be
measured using the inverse
Reynolds number,

Re−1 =
√

6πµνπµν

ϵ2

= −3fπ. .

▶ Hydro and KT agree when
Re−1 ≲ 0.75.
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(Unphysical) early-time behavior
▶ Taking into account the conformal EOS, ϵ = aT 4, the conformal parameter w̃

can be related to E(w̃) via

w̃ = τT

4πη/s
= τϵ1/4

a1/44πη/s
= τ2/3E(w̃)

a1/44πη/s
. (17)

▶ At early times, E(w̃) = C−1
∞ w̃γ . Solving for w̃ gives

w̃ ∝ τ
2
3 /(1−γ/4) =

{
τ0.77, Hydro,

τ3/4, RKT.
(18)

▶ Going back into τ4/3ϵ ∝ E(w̃) ∝ w̃γ , we find

τ (4/3−γ)/(1−γ/4)ϵ = const. (19)

▶ For RKT, γ = 4/9 and τϵ = const.
▶ For Hydro, τ0.93ϵ = const, such that τϵ ∝ τ0.07.
▶ Unphysical early-time increase of transverse plane energy in hydro!

19 / 32



Early-time attractor evolution: Transverse energy
▶ Transverse-plane dynamics can be expected to set in when τ ∼ R (R ≃ 3 fm).
▶ Much before, the evolution can be approximated as independent, point-wise

Bjorken attractor evolutions.
▶ The transverse-plane energy at time τ can be evaluated as

dEtr

dη
= τ

∫
x⊥

(T xx + T yy) = τ

∫
x⊥

(
2
3 − fπ

)
ϵ. (20)

▶ At early times, fπ(w̃) ≃ fπ;0 < 2/3 and

ϵ ∝ τ
(4/3−γ)/(1−γ/4)
0

τ (4/3−γ)/(1−γ/4) ϵ0, (21)

which gives

dEtr

dη

⌋
early

=
(τ0

τ

) 1
3 (1−9γ/4)/(1−γ/4) dE0

tr
dη

= dE0
tr

dη
×

{
(τ/τ0)0.07, Hydro
1, RKT,

(22)

with dE0
tr/dη being the initial transverse energy.

▶ Unphysical early-time increase of transverse plane energy in hydro!
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Late-time agreement of transverse energy?
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▶ Knowing hydro unphysically increases transverse-plane energy, let’s scale down
initial energy to achieve agreement.

▶ Is this solution enough?
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Inhomogeneous cooling: Effects on geometry
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▶ Due to initial inhomogeneities, w̃0 ≡ w̃0(x⊥).
▶ At τ > τ0, w̃ ≡ w̃(τ, x⊥) is also position-dependent.
▶ Each point cools at a different rate ⇒ change in geometry!
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Importance of energy attractor: from initial to final state
▶ The definition of the energy attractor allows us to connect the energy density ϵ0

at initial time τ0 to the late-time limit:

τ
4/3
0 ϵ0 = (τ4/3ϵ)∞E(w̃0). (23)

▶ when w̃0 ≪ 1, E(w̃0) = C−1
∞ w̃γ

0 .
▶ By definition,

w̃0 = τ0T0

4πη/s
, (24)

▶ The conformal EOS ϵ0 = aT 4
0 allows w̃0 to be expressed as

w̃0 = τ0ϵ
1/4
0

a1/44πη/s
. (25)

▶ This leads to a relation between final- and initial-state energies:

(τ4/3ϵ)∞ =
(

4πη

s
a1/4

)γ (
τ

( 4
3 −γ)/(1− γ

4 )
0 ϵ0

)1−γ/4
. (26)
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(Local) Attractor scaling of hydro
▶ Due to the pre-equilibrium evolution, ε2(τ = τT ) ̸= ε2(τ = τ0).
▶ Discarding early-time hydro evolution as unphysical, we demand

lim
τ→∞

ϵhydro(τ) = lim
τ→∞

ϵRKT(τ). (27)

▶ Knowing the relation between (τ4/3ϵ)∞ and ϵ0, hydro agrees with RKT at late
times if:

ϵ0,hydro =
[(

4πη/s

τ0
a1/4

) 1
2 − 9γ

8
(

C∞,RTA

C∞,γ

)9/8
ϵ0,RTA

] 8/9
1−γ/4

. (28)

▶ The ideal hydro limit can be taken by noting that τ4/3ϵid.(τ) = τ
4/3
0 ϵ0 (γ = 0):

ϵ0,id. = a1/9
(

4πη

s

)4/9
C∞,RTAτ

−4/9
0 ϵ

8/9
0,RTA, (29)

where η/s acts as a free parameter to tune e.g. the final dE⊥/dη, reminiscent of
the absence of free-streaming in the τ → 0 limit of ideal hydro.
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Fixing the preequilibrium discrepancies

▶ Preeq. discrepancies counteracted using modified, locally-scaled ϵhydro
0 (x⊥).

Fails when eq. time τeq ∼ γ̂−4/3 is comparable to R and eq. is interrupted by
transverse expantion!

▶ Hybrid simulations, switching from KT to hydro at τsw > τ0?
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Transition between dynamical regimes

▶ Transverse expansion sets in when ⟨u⊥⟩ϵ ≳ 0.1, for τ ≃ 0.2R.

▶ Hydro is applicable when Re−1 ≲ 0.75 ⇒ discrepancies can be expected for
4πη/s ≳ 3.

26 / 32



Fixing the preequilibrium discrepancies
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▶ Hybrid simulations, switching from KT to hydro at τsw > τ0.
When Re−1(τsw) ≳ 0.4, part of the system is still in preeq. ⇒ discrepancies will
appear at late times ⇒ Re−1(τsw)-based criterion!
For small γ̂, Re−1(τeq) is still large ⇒ Re−1-based switching criterion is never
reached! 27 / 32



Scaled and hybrid hydro vs. KT
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▶ Naive hydro, initialized with same ϵ0 as RKT at τ0 = 0.4–1 fm/c underestimates
εp and overestimates dEtr/dη.

▶ Scaled hydro is in perfect agreement at large γ̂ but loses applicability as γ̂ ≲ 3–4.
▶ Hybrid hydro can improve on scaled hydro, but only down to γ̂ ≃ 1.
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Regime of applicability of hydrodynamics

▶ Transverse expansion sets in at τExp ∼ 0.2R, independent of opacity.
▶ Hydro applicable when Re−1 ≲ 0.75.
▶ When γ̂ ≲ 3, hydrodynamization is interrupted by transv. expansion.
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Hydrodynamics in real collision systems
What does the criterion γ̂ ≳ 3 imply for the applicability of hydro to realistic
collisions?

p + p :
min.bias
γ̂ ∼ 0.7

(
η/s
0.16

)−1 (
R

0.12 fm
)1/4

(
dE

(0)
⊥ /dη

7.1 GeV

)1/4 (
νeff

42.25
)−1/4

far from hydrodynamic behaviour

p + Pb :
min.bias
γ̂ ∼ 1.5

(
η/s
0.16

)−1 (
R

0.81 fm
)1/4

(
dE

(0)
⊥ /dη

24 GeV

)1/4 (
νeff

42.25
)−1/4 high mult.

≲ 2.7

very high multiplicity events approach regime of applicability, but do not reach it

O + O :
30−40%
γ̂ ∼ 2.2

(
η/s
0.16

)−1 (
R

1.13 fm
)1/4

(
dE

(0)
⊥ /dη

55 GeV

)1/4 (
νeff

42.25
)−1/4 ∼

70−80%
1.4 −

0−5%
3.1

probes transition region to hydrodynamic behaviour

Pb + Pb :
30−40%
γ̂ ∼ 5.7

(
η/s
0.16

)−1 (
R

2.78 fm
)1/4

(
dE

(0)
⊥ /dη

1280 GeV

)1/4 (
νeff

42.25
)−1/4 ∼

70−80%
2.7 −

0−5%
9.0

hydrodynamic behaviour in all but peripheral collisions
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Limitations of current approach

▶ The “scaled hydro” argument rests on an analytical knowledge of the attractor –
known in a limited number of cases!

▶ Effects due to non-ideal EOS ignored!
▶ Effects due to finite mass (non-conformal) ignored!
▶ Realistic (bulk) viscosities ignored!
▶ Bjorken attractor loses validity if the system is not boost-invariant.
▶ Can RTA go beyond current model?

Non-ideal ✓ [P. Romatschke, PRD 85 (2012) 065012]

Non-conformal ✓ [PRD 109 (2024) 076001, PRD 110 (2024) 056002]

Realistic transport coefficients ✓ [PLB 855 (2024) 138795, PRD 110 (2024) 056002]

Full 3 + 1D ✓ [Nature Comput. Sci. 2 (2022) 641]
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Summary

▶ We employed KT to explore transverse flow for a simplified, conformal fluid over
the entire opacity range.

▶ Hydrodynamics is accurate at 5% level if Re−1 drops below ∼ 0.75 before
transverse expansion sets in.

▶ In small systems (p+p, p+Pb), transverse expansion interrupts equilibration ⇒
hydro not applicable!

O+O covers transition regime to hydro behaviour

▶ Support through the DEVELOP grant awarded by the West University of
Timis, oara is gratefully acknowledged.
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Appendix



Attractor solution (µ = 0)
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RTA attractor
Hydro attractor

▶ Regularity at w̃ = 0 selects the attractor.
▶ Solutions initialised at various w̃0 decay towards the attractor.
▶ Hydro casually gives negative χ = PL/PT .
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Attractor for µ ̸= 0
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χ
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RTA attractor

Hydro attractor

w̃ = 5τ

4πτR
= τT

4πη/s

[
1 − α0

4 + 3
4 ln τ4/3P

τ
4/3
0 P0

]
. (30)

▶ RTA validated against BAMPS.
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Attractor for HS
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▶ Attractor-like behaviour confirmed also for hard spheres, η = 1.2654T/σ.
▶ Here, τR = 5η/4P ∼ τ , such that

w̃ = 1
1.2654π Kn = const, Kn = 1

τnσ
= 1

τ0n0σ
. (31)
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Attractor for HS
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w̃ = 5τ/4πτR

Partons (µ = 0, η/s = const)
Ideal gas (µ 6= 0, η/s = const)
Hard sphere gas (σ = const)

Full Boltzmann

▶ For HS, the system stays at the same w̃ ⇒ χ(w̃) can be obtained by considering
multiple systems.

▶ χ(w̃) is very similar for partons vs ideal vs HS.
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Setup
▶ microscopic description in terms of averaged on-shell phase-space distribution:

f(τ, x⊥, η, p⊥, y) = (2π)3

νeff

dN

d3x d3p
(τ, x⊥, η, p⊥, y) (32)

boost invariance: (2 + 1) + 3D description
▶ time evolution: Boltzmann equation in relaxation time approximation

pµ∂µf = CRT A[f ] = pµuµ

τR
(feq − f) , τR = 5η

s
T −1 (33)

▶ specify initial energy density to be isotropic Gaussian with anisotropic
perturbation

ϵ(τ0, x⊥) =
dE

(0)
⊥

dη

1
πR2τ0

exp
(

−x2
⊥

R2

){
1 + δnexp

(
− x2

⊥
2R2

)(
x⊥

R

)n

cos(nϕx)
}
(34)

(no ecc.) (n = 2) (n = 3) (n = 4) 37 / 32



Eccentricity Dependence
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▶ almost no ϵn-dependence, only small negative/positive trend (except cubic
response)

▶ in conflict with conventional knowledge (upwards trend); even in identical setup
Niemi, Eskola, Paatelainen PRC 93 (2016) 024907 Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

▶ cross-checked this also with e.g. hydro
attributed to other features of specific initial state; not fully described by ϵn? 38 / 32



Opacity Dependence
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▶ linear order results have different ranges of validity for different vn due to
peculiarities of small-γ̂-behaviour

▶ agreement with previous results in identical setup up to moderate γ̂
Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

▶ extension to higher γ̂, clear signs of saturation
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Pre-equilibrium “running” of eccentricity
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▶ Due to inhomogeneous cooling, eccentricity decays in pre-equilibrium phase.
▶ The full 0 + 1D “running” of εn is: [γRKT = 4/9, γMIS ≃ 0.526]

εn(τ → ∞)
εn(τ → 0) =

(1 − γ
4 ) n

2 +2

(1 − γ
6 )n+1 . (35)
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Attractro scaling of hydro

▶ Due to the pre-equilibrium evolution, ε2(τ = τT ) < ε2(τ = τ0).
▶ Since εn running is different for hydro than for RKT, the response in ϵp will also

be different.
▶ The solution is to acknowledge that the pre-equilibrium evolution is governed by

the attractor solution,
τ

4
3 −γ

1−γ/4 e ∼ const.
▶ A way to cure the hydro vs RKT discrepancy is to perform “backwards running”

on hydro, such that hydro and RKT agree in the “hydro” regime (when w̃ → ∞):

lim
τ→∞

ehydro(τ) = lim
τ→∞

eRKT(τ). (36)
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Attractro scaling of hydro
▶ In general, one may write

e(τ) = e∞E(w̃), e∞ = aT 4
∞, T∞ = 4π(η/s)w̃∞/τ, (37)

where w̃∞ depends on γ (= 4/9 for RKT and ≃ 0.526 for hydro):

w̃∞ = E1/4(w̃)
w̃

=
(

τ
( 1

3 − γ
4 )/(1−γ/4)

0
(e0/a)1/4

4πη/s

)1−γ/4

C1/4
∞ τ2/3. (38)

▶ Since E(w̃) → 1 when w̃ → 1, matching is ensured if w̃hydro
∞ = w̃RKT

∞ , leading to

e0,γ =
[(

4πη/s

τ0
a1/4

) 1
2 − 9γ

8
(

C∞,RTA

C∞,γ

)9/8
e0,RTA

] 8/9
1−γ/4

. (39)

▶ The ideal hydro limit can be taken by noting that eideal(τ) = e0τ
4/3
0 /τ4/3:

e0,ideal = a1/9
(

4πη

s

)4/9
C∞,RTAτ

−4/9
0 e

8/9
0,RTA, (40)

where η/s acts as a free parameter to tune e.g. the final dE⊥/dη, reminiscent of
the absence of free-streaming in the τ → 0 limit of ideal hydro.

42 / 32



Attractro scaling of hydro
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▶ vHLLE and RTA are in excellent agreement at large γ̂.
▶ The ideal hydro limit now agrees with the γ̂ → ∞ of both RTA and vHLLE.
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Näıve hydro: Opacity Dependence in Comparison to Hydro
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▶ At τ0 = 0.01R, hydro and kinetic results seem to converge at large opacities.
▶ At smaller τ0 = 10−6R, the large opacity limits of hydro and kinetic theory do

not match.
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Non-commutativity of the Limits τ0 → 0 and γ̂ → ∞
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▶ Discrepancy from cutting out pre-equilibrium period; convergence only in
unphysical order of limits (γ̂ → ∞, then τ0 → 0)

Need non-equilibrium description of early time dynamics even at large γ̂.
▶ Small τ0: curves plateau at physical large-opacity asymptote in the limit τ0 → 0.
▶ Fixed τ0: For τeq ≲ τ0, responses reach the (unphysical) ideal hydro limit γ̂ → ∞.45 / 32



(FD)RLB approach
▶ First, we introduce the reduced distribution FRLB via

FRLB =
πνeffR2τ0

(2π)3

(
dE

(0)
⊥

dη

)−1 ∫ ∞

0

dp
τ (p

τ )3
, (41)

such that the Boltzmann eq. becomes(
∂

∂τ̄
+ v⊥ · ∇ +

1 + v2
z

τ

)
FRLB −

1
τ̄

∂[vz(1 − v2
z)FRLB]

∂vz

= −γ̂(v
µ

uµ)T (FRLB − Feq
RLB), (42)

with

τ̄ =
τ

τ
1/4
0 R3/4

, x̄⊥ =
x⊥

τ
1/4
0 R3/4

, ϵ̄ =
τ0πR2ϵ

dE
(0)
⊥ /dη

, T =

(
τ0πR2 π2

30 νeff

dE
(0)
⊥ /dη

)1/4

T. (43)

▶ Time stepping ∂τ FRLB = L[FRLB] performed using RK-3 with 2 intermediate stages.
▶ Advection performed in an upwind-biased manner using finite differences,

c1

(
∂F
∂x1

)
s,r

=
F

s+ 1
2 ,r

− F
s− 1

2 ,r

δx1
, (44)

where the fluxes F
s± 1

2
are computed using the WENO-5 scheme.
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(FD)RLB: Momentum space discretization
▶ ϕp → ϕp;i = ϕ0 + 2π

Qϕp
(j − 1

2 ) [Mysovskikh trigonometric quadrature]

▶ vz → vz;j ≡ roots of PQz (vz;j) [Gauss-Legendre quadrature]
▶ vz derivative can be obtained by projection onto the Legendre polynomials:

FRLB =
∞∑

ℓ=0

FRLB
ℓ Pℓ(vz) ⇒

[
∂[vz(1 − v2

z)FRLB]
∂vz

]
=

∫ 1

−1

dv
′
z KP (vz, v

′
z)F(v

′
z), (45)

where

KP (vz, v
′
z) =

∞∑
m=1

m(m + 1)
2

Pm(vz)
[

m + 2
2m + 3

Pm+2(v
′
z)

−
(

m

2m − 1
−

m + 1
2m + 3

)
Pm(v

′
z) −

m − 1
2m − 1

Pm−2(v
′
z)
]

. (46)

▶ After discretization, we may write[
∂[vz(1 − v2

z)FRLB]
∂vz

]
ji

=
Qz∑

j′=1

KP
j,j′ FRLB

j′i , (47)

where the Qz × Qz matrix Pj,j′ can be computed before runtime.
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Small γ̂: Free-streaming coordinates
▶ At small γ̂, it is convenient to employ the following free-streaming coordinates to parametrise the momentum

space:

p
τ
fs =p

τ ∆, v
fs
z =

τvz

τ0∆
, ∆ =

√
1 +
(

τ2

τ2
0

− 1
)

v2
z,

p
τ =p

τ
fs∆fs, vz =

τ0vfs
z

τ∆fs
, ∆fs =

√
1 −
(

1 −
τ2

0
τ2

)
v2

z;fs. (48)

▶ Energy-weighted observables can be computed starting from the reduced distribution

Ffs =
πνeffR2τ0

(2π)3

(
dE

(0)
⊥

dη

)−1 ∫ ∞

0

dp
τ
fs (p

τ
fs)3

f, (49)

which satisfies
∂Ffs

∂τ̄
+

1
∆fs

v⊥;fs · ∇⊥Ffs = −γ̂(v
µ

uµ)T (Ffs − Feq
fs ). (50)

▶ The only change to RLB is that vz is now discretized in logarithmic scale:

v
fs
z;j =

1
A

tanh χj , χj =
(

2j − 1
Qz

− 1
)

arctanhA, (51)

where 0 < A < 1.
▶ The vfs

z integration is performed using the rectangle method:∫ 1

−1

dv
fs
z h(v

fs
z ) →

Qz∑
j=1

w
fs
j h(v

fs
z;j), w

fs
j =

2arctanhA

AQz cosh2 χj

. (52)
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Initial conditions: Romatschke-Strickland distribution
▶ The system is initialized using the Romatschke-Strickland distribution for BE statistics,

fRS =
{

exp
[

1
Λ

√
(p · u)2 + ξ0(p · η̂)2

]
− 1
}−1

, (53)

where Λ ≡ Λ(x⊥) satisfies

Λ4(x⊥) = 2T
4(τ0, x⊥)

(
arctan

√
ξ0√

ξ0

+
1

1 + ξ0

)−1

, (54)

▶ The anisotropy parameter ξ0 can be used to set PL;0/PT ;0 via

PL;0

PT ;0
=

2
1 + ξ0

(1 + ξ0) arctan
√

ξ0√
ξ0

− 1

1 + (ξ0 − 1) arctan
√

ξ0√
ξ0

. (55)

▶ PL;0/PT ;0 = 0 is achieved when ξ0 → ∞.
▶ For γ̂ ≥ 2 (RLB), we used ξ0 = 20 (PL/PT =);
▶ For γ̂ ≤ 2 (FS), we used ξ0 = 100 (PL/PT =).
▶ For both RLB and FS, we have

FRS
RLB = FRS

fs =
ϵ/2π

(1 + ξ0v2
z)2

(
arctan

√
ξ0√

ξ0

+
1

1 + ξ0

)−1

. (56)
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Eccentricity Dependence
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▶ almost no ϵn-dependence
▶ in conflict with conventional knowledge (upwards trend); even in identical setup

Niemi, Eskola, Paatelainen PRC 93 (2016) 024907 Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

▶ cross-checked this also with e.g. hydro
attributed to other features of specific initial state; not fully described by ϵn?
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Eccentricity Dependence in vHLLE

ϵp =

∫
x⊥

(
T 11 − T 22 + 2iT 12)∫
x⊥

(T 11 + T 22)
=

∫
x⊥

∫ d3p
(2π)3 pτ

(
1 − v2

z

)
e2iϕp f∫

x⊥

∫ d3p
(2π)3 pτ (1 − v2

z) f
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▶ similar to kinetic results: almost constant, negative trend at large opacities
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Solutions in opacity expansion
zeroth order pµ∂µf (0) = 0: [t(τ, τ0, y − η) = τ cosh(y − η) −

√
τ2

0 + τ2 sinh2(y − η)]

f (0)(τ, x⊥, p⊥, y − η) = f (0)
(

τ0, x⊥ − v⊥t(τ, τ0, y − η), p⊥, arsinh
(

τ

τ0
sinh(y − η)

))
first order pµ∂µf (1) = C[f (0)]:

f (1)(τ, x⊥, p⊥, y − η) =
∫ τ

τ0

dτ ′
(

C[f (0)]
pτ

)
(τ ′, x⊥

′, p⊥, y − η′)

collision kernel: find local rest frame and temperature using Landau matching to
compute CRT A[f (0)] = pµuµT

5 η/s (feq − f) where feq = [exp(pµuµ/T ) − 1]−1

T µν = νeffτ

∫ d3p

(2π)3pτ
pµpνf (0) ϵuµ = uνT νµ ϵ = νeffπ2

30 T 4

free-streamed δϵ-cosine:

|x⊥ − v⊥τ |n cos(nϕx⊥−v⊥τ ) =
n∑

j=0

(
n

j

)
xn−j

⊥ (−τ)j cos[nϕx⊥ + j(ϕx⊥ − ϕv⊥)]
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Computing observables
▶ jacobian from milne coordinates

dN

d2p⊥dy
(τ) = νeff

∫
d2x⊥ dη τ pτ f(τ, x⊥, η, p⊥, y)

▶ extract moments relevant for flow harmonics vn:

Vmn =
∫

d2pT pm
T einϕp

dN

d2pT dy
= V

(0)
mn + V

(1)
mn, v

(m)
n =

Vm,n

Vm,0
=

δV
(1)

mn

V
(0)

m,0

⇒ V
(1)

mn(τ) =
∫

p⊥

einϕp pm
⊥

∫
x⊥

∫
dη

∫ τ

τ0

dτ ′ τ ′ νeff
(2π)3

pµuµ

τR
(feq − f) ≡ V

(1,eq)
mn − V

(1,0)
mn .

▶ in total: 6d integral over τ ′, x⊥, η, p⊥. 4 computed analytically, 2 numerically

V
(1,0)

mn︸ ︷︷ ︸
decay of f (0)

= −γ̂δnV
(0)

m0 Pmn(τ̃) V
(1,eq)

mn︸ ︷︷ ︸
buildup of feq

= +γ̂δnνeffR−m

(
ν−1

eff
dE

(0)
⊥

dη
R

)m+3
4

Qmn(τ̃)

Pm0(τ̃) =
(m + 2)

3

∫ τ̃

τ̃0

dτ̃
′

∫ ∞

0

dx̃⊥ x̃⊥T̃ γ exp

[
−

(m + 2)

3
(∆τ̃

′2 + x̃
2
⊥)

][
I0
( 2m + 4

3
b

)
− βI

′
0

( 2m + 4

3
b

)]
Qm(τ̃) =

(
π2

30

)−(m+3)/4 1

2π1/2
Γ(m + 3) ζ(m + 3)

Γ
(

m+2
2

)
Γ
(

m+3
2

) ∫ τ̃

τ̃0

dτ̃
′

∫ ∞

0

dx̃⊥ x̃⊥τ̃
′

T̃
m+4

γ
−m−2

× 2F1
(m + 2

2
,

m + 2

2
; 1; β

2
)
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