Applicability of hydrodynamics in large and small systems

Victor E. Ambruș

Physics Faculty, West University of Timișoara, Romania

Work in collaboration with C. Werthmann (Wrocław) and S. Schlichting (Bielefeld)

PRD **107** (2023) 094013 (arXiv:2211.14379) PRL **130** (2023) 152301 (arXiv:2211.14356)

QCD challenges from pp to AA collisions, 5^{th} Edition 04/09/2024

Outline

Introduction

Transport models

Pre-equilibrium: Bjorken attractor

Scaled hydro

Hybrid simulations

Conclusions

QGP in the laboratory

- Bjorken coordinates: $\tau = \sqrt{t^2 - z^2};$ $\eta = \tanh^{-1}(z/t).$
- ► Ultra-relatistic heavy-ion collisions $(\sqrt{s_{NN}} = 5.02 \text{ TeV PbPb})$ deposit $dE_{\perp}/d\eta \sim 1280 \text{ GeV}.$
- Due to rapid longitudinal expansion, the QGP cools, reaching $k_BT \sim 350$ MeV at $\tau \simeq 1$ fm/c.

Bjorken model

[A. Monnai, PhD Thesis (Tokyo, 2014)]

Nuclear collision model:

- Initial state: Colour glass condensate
- Early stage: Glasma?
- Onset of QGP
- Hadronisation
- Freeze-out

Hadronic Collisions in Experiment

• Correlation peak at $(\Delta \phi, \Delta \eta) = (0, 0)$ due to jet fragmentation.

Bands at $\Delta \phi = 0$ (near-side) and π (away-side) are due to elliptic flow, $\sim \cos(2\Delta \phi)$.

500

Transverse plane observables

- The overlap region between the colliding nuclei also expands in the transverse plane.
- The strong coupling of the QGP leads to hydrodynamic-like behaviour.
- Initial eccentricities \(\epsilon_n\) lead to momentum-space anisotropies, characterized by flow harmonics \(v_n\).
- ▶ $v_2 \equiv$ elliptic flow was one of the first exp. signatures for the formation of the QGP medium.

Standard modelling of heavy ion collisions

- Shortly after the collision, the system is in a far-from-equilibrium state.
- Pre-equilibrium dynamics require a non-equilibrium description.
- Strongly-interacting QGP leaves imprints of thermalization and collectivity in final-state observables:

 v_n , $\langle p_T \rangle$, particle yields, ...

- Large systems (A + A) equilibrate quickly and hydrodynamics becomes applicable.
- For small systems (p + A, p + p), a similar argument undisputedly holds is hard to digest...

SQ Q

Small systems

Very dilute, hydrodynamics not necessarily applicable

still collective behaviour is observed!

Nagle, Zajc Ann.Rev.Nucl.Part. 68 (2018) 211

Collectivity can also be explained in kinetic theory, a mesoscopic description which does not rely on equilibration.

KT interpolates between free streaming at small opacities and hydrodynamics at large opacities!

Aim

Benchmarking of hydro for transverse flow observables w.r.t. kinetic theory for a simplified (conformal) fluid on full range from small to large system sizes.

Eccentricities and harmonic response

Transverse plane profiles with $\cos(n\varphi)$ eccentricities:

Inhomogeneous transverse gradients \Rightarrow inhomogeneous flow:

KT: Model and setup

Mesoscopic description in terms of averaged on-shell phase-space distribution:

$$f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{\mathrm{d}N}{\mathrm{d}^3 x \,\mathrm{d}^3 p}(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y),$$

describing massless bosons with $\nu_{\text{eff}} = 2(N_c^2 - 1) + \frac{7}{8} \times 4N_c N_f \rightarrow 42.25$ Time evolution is described via the Boltzmann eq. in conformal RTA:

$$p^{\mu}\partial_{\mu}f = C_{\text{RTA}}[f] = -\frac{p^{\mu}u_{\mu}}{\tau_{R}}(f - f_{\text{eq}}), \quad f_{\text{eq}} = \frac{1}{e^{p^{\mu}u_{\mu}/T} - 1}$$

• We take $\eta/s = \text{const}$, while τ_R is related to η/s via

$$\tau_R = \frac{5\eta}{sT}.\tag{1}$$

• We assume boost invariance $\Rightarrow f$ depends only on $y - \eta$.

• Parametrizing $f \equiv f(\tau, \mathbf{x}_{\perp}; \mathbf{p}_{\perp}, v^z)$, with $v_z = \tanh(y - \eta_s) = \tau p^{\eta} / p^{\tau}$, we have

$$\frac{\partial f}{\partial \tau} + \mathbf{v}_{\perp} \cdot \boldsymbol{\nabla}_{\perp} f - \frac{v^z}{\tau} (1 - v_z^2) \frac{\partial f}{\partial v^z} = -\frac{1}{\tau_R} (f - f_{\text{eq}}). \tag{2}$$

KT: Initial state

• At au_0 , we take

$$f(\tau_0, \mathbf{x}_\perp; \mathbf{p}_\perp, v^z) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{\delta(v^z)}{\tau_0 p_\perp} \frac{dN_0}{d^2 \mathbf{x}_\perp d^2 \mathbf{p}_\perp d\eta}.$$
 (3)

• We further assume $f(\tau_0)$ depends only on $|\mathbf{p}_{\perp}|$ (no transverse anisotropies) and

$$\frac{dN_0}{d^2 \mathbf{x}_{\perp} d^2 \mathbf{p}_{\perp} d\eta} = F\left(\frac{Q_s(\mathbf{x}_{\perp})}{p_{\perp}}\right),\tag{4}$$

where F is some function of the ratio of the momentum scale $Q_s({\bf x}_\perp)$ and p_\perp satisfying

$$\epsilon(\tau_0, \mathbf{x}_{\perp}) = \frac{1}{\tau_0} \int d^2 \mathbf{p}_{\perp} p_{\perp} \frac{dN_0}{d^2 \mathbf{x}_{\perp} d^2 \mathbf{p}_{\perp} dy}.$$
 (5)

 $T^{\mu\nu} = \int_{\mathbf{p}} p^{\mu} p^{\nu} f \text{ is initialized as} \qquad [\int_{\mathbf{p}} \equiv \frac{\nu_{\text{eff}}}{(2\pi)^3} \sqrt{-g} \int d^3 p / p^{\tau}]$ $T_0^{\mu\nu} = \epsilon_0(\mathbf{x}_{\perp}) \times \text{diag}(1, 1/2, 1/2, 0),$

i.e. the longitudinal pressure vanishes, $P_L(\tau_0) = 0$.

 \blacktriangleright \Rightarrow system evolution depends only on $\epsilon_0(\mathbf{x}_{\perp})$ and **opacity** $\hat{\gamma}$.

System opacity $\hat{\gamma}$

 \blacktriangleright The system evolution depends only on the opacity \sim "total interaction rate"

Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

30-40%

ク Q (~ 12 / 32

(日)

$$\hat{\gamma} = \left(5\frac{\eta}{s}\right)^{-1} \left(\frac{1}{a\pi} R \frac{\mathrm{d}E_{\perp}^{(0)}}{\mathrm{d}\eta}\right)^{1/4}, \qquad a = \frac{\pi^2}{30} \nu_{\mathrm{eff}}.$$

 \blacksquare $\hat{\gamma}$ encodes dependencies on viscosity , transverse size and energy scale, with

$$rac{\mathrm{d} E_{\perp}^{(0)}}{\mathrm{d} \eta} = \int_{\mathbf{x}_{\perp}} au_0 \epsilon_0, \qquad \qquad R^2 rac{\mathrm{d} E_{\perp}^{(0)}}{\mathrm{d} \eta} = \int_{\mathbf{x}_{\perp}} au_0 \epsilon_0 \mathbf{x}_{\perp}^2.$$

We take as initial condition the 30 − 40% centrality-class average of Pb+Pb at 5.02 TeV ⇒ R ≃ 2.78 fm and dE⁽⁰⁾_⊥/dη = 1280 GeV

Borghini, Borrell, Feld, Roch, Schlichting, Werthmann PRC 107 (2023), 034905

For a fixed initial profile, $\hat{\gamma}$ can be varied via η/s :

$$\hat{\gamma} \approx \frac{11}{4\pi\eta/s}$$

Hydro setup

In hydro, the system is described directly by the energy-momentum tensor,

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P \Delta^{\mu\nu} + \pi^{\mu\nu}, \qquad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}.$$

• Energy-momentum conservation $\partial_{\mu}T^{\mu\nu} = 0$ entails

$$\dot{\epsilon} + (\epsilon + P)\theta - \pi^{\mu\nu}\sigma_{\mu\nu} = 0,$$

$$(\epsilon + P)\dot{u}^{\mu} - \nabla^{\mu}P + \Delta^{\mu}{}_{\lambda}\partial_{\nu}\pi^{\lambda\nu} = 0,$$

where $\theta = \partial_{\mu} u^{\mu}$ and $\sigma_{\mu\nu} = \nabla_{\langle \mu} u_{\nu \rangle}$,¹ with $\nabla_{\mu} \equiv \Delta^{\alpha}_{\mu} \partial_{\alpha}$. In MIS viscous hydro, $\pi^{\mu\nu}$ evolves according to

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} + 2\tau_{\pi}\pi^{\langle\mu}_{\lambda}\omega^{\nu\rangle\lambda} - \delta_{\pi\pi}\pi^{\mu\nu}\theta - \tau_{\pi\pi}\pi^{\lambda\langle\mu}\sigma^{\nu\rangle}_{\lambda} + \phi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha},$$

where $\omega_{\mu\nu} = \frac{1}{2} [\nabla_{\mu} u_{\nu} - \nabla_{\nu} u_{\mu}]$ is the vorticity tensor.

The transport coefficients are chosen for compatibility with RTA:

$$\eta = \frac{4}{5}\tau_{\pi}P, \quad \delta_{\pi\pi} = \frac{4\tau_{\pi}}{3}, \quad \tau_{\pi\pi} = \frac{10\tau_{\pi}}{7}, \quad \phi_{7} = 0, \quad \tau_{\pi} = \tau_{R}.$$

0 + 1-D conformal Bjorken flow

• At early times ($au \ll R$), transverse dynamics are irrelevant and

$$T^{\mu}{}_{\nu} = \operatorname{diag}(e, -\mathcal{P}_T, -\mathcal{P}_T, -\mathcal{P}_L),$$

$$\pi^{\mu}{}_{\nu} = \pi_d \times \operatorname{diag}\left(0, \frac{1}{2}, \frac{1}{2}, -1\right),$$
(6)

such that $\mathcal{P}_T = P - \frac{1}{2}\pi_d$ and $\mathcal{P}_L = P + \pi_d$.

• Under MIS hydro, ϵ and π_d evolve according to

$$\tau \frac{\partial \epsilon}{\partial \tau} + \epsilon + \mathcal{P}_L = 0, \qquad \tau \frac{\partial \pi_d}{\partial \tau} + \left(\lambda + \frac{\tau}{\tau_R}\right) \pi_d + \frac{4\eta}{3\tau_R} = 0, \qquad (7)$$

where $\lambda = (\delta_{\pi\pi} + \frac{1}{3}\tau_{\pi\pi})/\tau_{\pi} = 38/21$ for compatibility with RTA. It is convenient to employ the conformal scaling parameter

$$\tilde{w} = \frac{5\tau}{4\pi\tau_R} = \frac{\tau T}{4\pi\eta/s} \qquad \Rightarrow \qquad \tau \frac{d\tilde{w}}{d\tau} = \tilde{w}\left(\frac{2}{3} - f_{\pi}\right). \tag{8}$$

• Then, the function $f_{\pi} = \pi_d/\epsilon$ obeys a closed-form differential equation:

$$\tilde{w}\left(\frac{2}{3} - \frac{f_{\pi}}{4}\right)\frac{df_{\pi}}{d\tilde{w}} + \left(\lambda - \frac{4}{3} + \frac{4\pi\tilde{w}}{5} - f_{\pi}\right)f_{\pi} + \frac{16}{45} = 0,$$
(9)

showing that $f_{\pi} \equiv f_{\pi}(\tilde{w})$.

Attractor solution

Free-streaming fixed point (around $\tilde{w} = 0$):

$$f_{\pi}(\tilde{w} \ll 1) = f_{\pi;0} + f_{\pi;1}\tilde{w} + \dots$$
 (10)

• $f_{\pi;0}$ and $f_{\pi;1}$ are independent on ICs, but depend on the theory:

$$f_{\pi;0}^{\text{Hydro}} \simeq -0.4, \qquad f_{\pi;0}^{\text{RKT}} = \frac{1}{3}.$$
 (11)

• The value of $f_{\pi;0}$ influences $\mathcal{P}_L/\mathcal{P}_T$ at early time:

$$\frac{\mathcal{P}_L}{\mathcal{P}_T} = \frac{1+3f_\pi}{1-\frac{3}{2}f_\pi} \xrightarrow{\tilde{w}\to 0} \begin{cases} -0.13, & \text{Hydro}, \\ 0, & \text{RKT}. \end{cases}$$
(12)

• Hydro fixed point (around $\tilde{w}^{-1} = 0$)

$$f_{\pi}(\tilde{w} \gg 1) = -\frac{4}{9\pi\tilde{w}},\tag{13}$$

which is independent of ICs and of theory.

Hydro vs Kinetic theory

• Regularity at $\tilde{w} = 0$ selects the attractor.

Hydro employed in HIC modelling, but it breaks down far from eq.

- Kinetic theory overcomes this limitation, but realistic simulations are expensive due to C[f].
 AMPT: He, Edmonds, Lin, Liu, Molnar, Wang [PLB 753 (2016) 506] BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]
- ► RTA is 1 2 o.m. faster than BAMPS.

VEA, Busuioc, Fotakis, Gallmeister, Greiner [PRD 104 (2021) 094022]

Energy attractor

► Taking $\tau^{4/3} \epsilon(\tau) = (\tau^{4/3} \epsilon)_{\infty} \mathcal{E}$ and switching to \tilde{w} , energy conservation implies

$$\tilde{w}\left(\frac{2}{3} - \frac{f_{\pi}}{4}\right)\frac{d\mathcal{E}}{d\tilde{w}} + f_{\pi}\mathcal{E} = 0.$$
(14)

• $\mathcal{E} \equiv \mathcal{E}(\tilde{w})$ when f_{π} is a function only of \tilde{w} .

The normalization is such that at late times,

$$\mathcal{E}(\tilde{w} \gg 1) = 1 - \frac{2}{3\pi\tilde{w}},\tag{15}$$

independent of theory.

• At early times ($\tilde{w} \ll 1$), we have

$$\mathcal{E}(\tilde{w}) = C_{\infty}^{-1} \tilde{w}^{\gamma}, \qquad \gamma = \frac{12f_{\pi;0}}{3f_{\pi;0} - 8} = \begin{cases} 0.526, & \text{Hydro}, \\ 4/9, & \text{RTA}, \end{cases}$$
(16)

with $C_{\infty} \simeq 0.88$ (RTA) and 0.80 (hydro).

Attractor curves

- KT and hydro disagree far from equilibrium.
- Noneq. effects can be measured using the inverse Reynolds number,

$$\operatorname{Re}^{-1} = \sqrt{\frac{6\pi^{\mu\nu}\pi_{\mu\nu}}{\epsilon^2}}$$
$$= -3f_{\pi}.$$

Hydro and KT agree when $\mathrm{Re}^{-1} \lesssim 0.75.$

(Unphysical) early-time behavior

► Taking into account the conformal EOS, $\epsilon = aT^4$, the conformal parameter \tilde{w} can be related to $\mathcal{E}(\tilde{w})$ via

$$\tilde{w} = \frac{\tau T}{4\pi\eta/s} = \frac{\tau \epsilon^{1/4}}{a^{1/4}4\pi\eta/s} = \frac{\tau^{2/3}\mathcal{E}(\tilde{w})}{a^{1/4}4\pi\eta/s}.$$
(17)

• At early times, $\mathcal{E}(\tilde{w}) = C_{\infty}^{-1} \tilde{w}^{\gamma}$. Solving for \tilde{w} gives

$$\tilde{w} \propto \tau^{\frac{2}{3}/(1-\gamma/4)} = \begin{cases} \tau^{0.77}, & \text{Hydro}, \\ \tau^{3/4}, & \text{RKT}. \end{cases}$$
 (18)

• Going back into $\tau^{4/3} \epsilon \propto \mathcal{E}(\tilde{w}) \propto \tilde{w}^{\gamma}$, we find

$$\tau^{(4/3-\gamma)/(1-\gamma/4)}\epsilon = \text{const.}$$
(19)

- For RKT, $\gamma = 4/9$ and $\tau \epsilon = \text{const.}$
- For Hydro, $\tau^{0.93}\epsilon = \text{const}$, such that $\tau\epsilon \propto \tau^{0.07}$.
- Unphysical early-time increase of transverse plane energy in hydro!

19 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Early-time attractor evolution: Transverse energy

- For Transverse-plane dynamics can be expected to set in when $\tau \sim R \ (R \simeq 3 \text{ fm})$.
- Much before, the evolution can be approximated as independent, point-wise Bjorken attractor evolutions.
- The transverse-plane energy at time τ can be evaluated as

$$\frac{dE_{\rm tr}}{d\eta} = \tau \int_{\mathbf{x}_{\perp}} (T^{xx} + T^{yy}) = \tau \int_{\mathbf{x}_{\perp}} \left(\frac{2}{3} - f_{\pi}\right) \epsilon.$$
(20)

• At early times, $f_{\pi}(\tilde{w}) \simeq f_{\pi;0} < 2/3$ and

$$\epsilon \propto \frac{\tau_0^{(4/3-\gamma)/(1-\gamma/4)}}{\tau^{(4/3-\gamma)/(1-\gamma/4)}}\epsilon_0,$$
(21)

which gives

$$\frac{dE_{\rm tr}}{d\eta} \Big|_{\rm early} = \left(\frac{\tau_0}{\tau}\right)^{\frac{1}{3}(1-9\gamma/4)/(1-\gamma/4)} \frac{dE_{\rm tr}^0}{d\eta} = \frac{dE_{\rm tr}^0}{d\eta} \times \begin{cases} (\tau/\tau_0)^{0.07}, & \text{Hydro}\\ 1, & \text{RKT}, \end{cases} (22)$$

with $dE_{\rm tr}^0/d\eta$ being the initial transverse energy.

Unphysical early-time increase of transverse plane energy in hydro!

20 / 32

Sar

Late-time agreement of transverse energy?

- Knowing hydro unphysically increases transverse-plane energy, let's scale down initial energy to achieve agreement.
- Is this solution enough?

Inhomogeneous cooling: Effects on geometry

- Due to initial inhomogeneities, $\tilde{w}_0 \equiv \tilde{w}_0(\mathbf{x}_{\perp})$.
- At $\tau > \tau_0$, $\tilde{w} \equiv \tilde{w}(\tau, \mathbf{x}_{\perp})$ is also position-dependent.
- \blacktriangleright Each point cools at a different rate \Rightarrow change in geometry!

Importance of energy attractor: from initial to final state

The definition of the energy attractor allows us to connect the energy density ϵ_0 at initial time τ_0 to the late-time limit:

$$\tau_0^{4/3} \epsilon_0 = (\tau^{4/3} \epsilon)_\infty \mathcal{E}(\tilde{w}_0).$$
(23)

- when $\tilde{w}_0 \ll 1$, $\mathcal{E}(\tilde{w}_0) = C_{\infty}^{-1} \tilde{w}_0^{\gamma}$.
- By definition,

$$\tilde{w}_0 = \frac{\tau_0 T_0}{4\pi\eta/s},\tag{24}$$

• The conformal EOS $\epsilon_0 = aT_0^4$ allows \tilde{w}_0 to be expressed as

$$\tilde{w}_0 = \frac{\tau_0 \epsilon_0^{1/4}}{a^{1/4} 4\pi \eta/s}.$$
(25)

This leads to a relation between final- and initial-state energies:

$$(\tau^{4/3}\epsilon)_{\infty} = \left(\frac{4\pi\eta}{s}a^{1/4}\right)^{\gamma} \left(\tau_0^{(\frac{4}{3}-\gamma)/(1-\frac{\gamma}{4})}\epsilon_0\right)^{1-\gamma/4}.$$
 (26)

23 / 32

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ の へ ()

(Local) Attractor scaling of hydro

- Due to the pre-equilibrium evolution, $\varepsilon_2(\tau = \tau_T) \neq \varepsilon_2(\tau = \tau_0)$.
- Discarding early-time hydro evolution as unphysical, we demand

$$\lim_{\tau \to \infty} \epsilon_{\rm hydro}(\tau) = \lim_{\tau \to \infty} \epsilon_{\rm RKT}(\tau).$$
(27)

• Knowing the relation between $(\tau^{4/3}\epsilon)_{\infty}$ and ϵ_0 , hydro agrees with RKT at late times if:

$$\epsilon_{0,\text{hydro}} = \left[\left(\frac{4\pi\eta/s}{\tau_0} a^{1/4} \right)^{\frac{1}{2} - \frac{9\gamma}{8}} \left(\frac{C_{\infty,\text{RTA}}}{C_{\infty,\gamma}} \right)^{9/8} \epsilon_{0,\text{RTA}} \right]^{\frac{8/9}{1-\gamma/4}}.$$
 (28)

• The ideal hydro limit can be taken by noting that $\tau^{4/3}\epsilon_{id.}(\tau) = \tau_0^{4/3}\epsilon_0$ ($\gamma = 0$):

$$\epsilon_{0,\text{id.}} = a^{1/9} \left(\frac{4\pi\eta}{s}\right)^{4/9} C_{\infty,\text{RTA}} \tau_0^{-4/9} \epsilon_{0,\text{RTA}}^{8/9}, \tag{29}$$

where η/s acts as a free parameter to tune e.g. the final $dE_{\perp}/d\eta$, reminiscent of the absence of free-streaming in the $\tau \to 0$ limit of ideal hydro.

Fixing the preequilibrium discrepancies

▶ Preeq. discrepancies counteracted using modified, locally-scaled $\epsilon_0^{\text{hydro}}(\mathbf{x}_{\perp})$.

Fails when eq. time $\tau_{eq} \sim \hat{\gamma}^{-4/3}$ is comparable to R and eq. is interrupted by transverse expansion!

• Hybrid simulations, switching from KT to hydro at $\tau_{sw} \geq \pi_0?_{sw} \geq \pi_0?_{sw} \geq \pi_0?_{sw}$

Transition between dynamical regimes

• Transverse expansion sets in when $\langle u_{\perp} \rangle_{\epsilon} \gtrsim 0.1$, for $\tau \simeq 0.2R$.

► Hydro is applicable when $\text{Re}^{-1} \leq 0.75 \Rightarrow$ discrepancies can be expected for $4\pi\eta/s \gtrsim 3$.

Fixing the preequilibrium discrepancies

• Hybrid simulations, switching from KT to hydro at $\tau_{sw} > \tau_0$.

- When $\operatorname{Re}^{-1}(\tau_{sw}) \gtrsim 0.4$, part of the system is still in preeq. \Rightarrow discrepancies will appear at late times $\Rightarrow \operatorname{Re}^{-1}(\tau_{sw})$ -based criterion!
- For small $\hat{\gamma}$, $\operatorname{Re}^{-1}(\tau_{eq})$ is still large \Rightarrow Re^{-1} -based switching criterion is never reached!

Scaled and hybrid hydro vs. KT

- Naive hydro, initialized with same ϵ_0 as RKT at $\tau_0 = 0.4-1 \text{ fm}/c$ underestimates ε_p and overestimates $dE_{\rm tr}/d\eta$.
- Scaled hydro is in perfect agreement at large $\hat{\gamma}$ but loses applicability as $\hat{\gamma} \lesssim 3-4$.
- Hybrid hydro can improve on scaled hydro, but only down to $\hat{\gamma} \simeq 1$.

5900

For Transverse expansion sets in at $\tau_{\rm Exp} \sim 0.2 R$, independent of opacity.

• Hydro applicable when $\text{Re}^{-1} \lesssim 0.75$.

▶ When $\hat{\gamma} \lesssim 3$, hydrodynamization is interrupted by transv. expansion.

ク Q (~ 29 / 32

三

Hydrodynamics in real collision systems

What does the criterion $\hat{\gamma}\gtrsim 3$ imply for the applicability of hydro to realistic collisions?

$$p + p : \hat{\gamma} \sim 0.7 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{0.12 \,\text{fm}}\right)^{1/4} \left(\frac{dE_{\perp}^{(0)}/d\eta}{7.1 \,\text{GeV}}\right)^{1/4} \left(\frac{\nu_{\text{eff}}}{42.25}\right)^{-1/4}$$

far from hydrodynamic behaviour

p + Pb :
$$\hat{\gamma} \sim 1.5 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{0.81 \,\mathrm{fm}}\right)^{1/4} \left(\frac{\mathrm{d}E_{\perp}^{(0)}/\mathrm{d}\eta}{24 \,\mathrm{GeV}}\right)^{1/4} \left(\frac{\nu_{\mathrm{eff}}}{42.25}\right)^{-1/4} \stackrel{\mathrm{high mult.}}{\lesssim} 2.7$$

very high multiplicity events approach regime of applicability, but do not reach it

$$O + O: \hat{\gamma} \sim 2.2 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{1.13 \,\mathrm{fm}}\right)^{1/4} \left(\frac{\mathrm{d}E_{\perp}^{(0)}/\mathrm{d}\eta}{55 \,\mathrm{GeV}}\right)^{1/4} \left(\frac{\nu_{\mathrm{eff}}}{42.25}\right)^{-1/4} \sim \frac{70 - 80\%}{1.4} - \frac{0 - 5\%}{3.1}$$

probes transition region to hydrodynamic behaviour

$$Pb + Pb : \hat{\gamma} \sim 5.7 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{2.78 \text{ fm}}\right)^{1/4} \left(\frac{dE_{\perp}^{(0)}/d\eta}{1280 \text{ GeV}}\right)^{1/4} \left(\frac{\nu_{\text{eff}}}{42.25}\right)^{-1/4} \sim 2.7 - 2.7 - 2.7$$

 $9.0^{0-5\%}$ 9.0 hydrodynamic behaviour in all but peripheral collisions

Limitations of current approach

- The "scaled hydro" argument rests on an analytical knowledge of the attractor known in a limited number of cases!
- Effects due to non-ideal EOS ignored!
- Effects due to finite mass (non-conformal) ignored!
- Realistic (bulk) viscosities ignored!
- Bjorken attractor loses validity if the system is not boost-invariant.
- Can RTA go beyond current model?
 - Non-ideal ✓ [P. Romatschke, PRD 85 (2012) 065012]
 - Non-conformal
 - Realistic transport coefficients \checkmark
 - Full 3 + 1D \checkmark

[PRD 109 (2024) 076001, PRD 110 (2024) 056002]

[PLB 855 (2024) 138795, PRD 110 (2024) 056002]

[Nature Comput. Sci. 2 (2022) 641]

Summary

- We employed KT to explore transverse flow for a simplified, conformal fluid over the entire opacity range.
- ▶ Hydrodynamics is accurate at 5% level if Re^{-1} drops below ~ 0.75 before transverse expansion sets in.
- In small systems (p+p, p+Pb), transverse expansion interrupts equilibration ⇒ hydro not applicable!
 - O+O covers transition regime to hydro behaviour

Support through the DEVELOP grant awarded by the West University of Timişoara is gratefully acknowledged.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Appendix

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽♀♡

Attractor solution $(\mu = 0)$

Regularity at $\tilde{w} = 0$ selects the attractor.

- \blacktriangleright Solutions initialised at various \tilde{w}_0 decay towards the attractor.
- Hydro casually gives negative $\chi = \mathcal{P}_L / \mathcal{P}_T$.

33 / 32

5900

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Attractor for $\mu \neq 0$

RTA validated against BAMPS.

▲□▶▲□▶▲□▶▲□▶▲□▶

Attractor for HS

Attractor-like behaviour confirmed also for hard spheres, \$\eta = 1.2654T/\$\sigma\$.
 Here, \$\tau_R = 5\eta/4P \sigma\$, such that

$$\tilde{w} = \frac{1}{1.2654\pi \text{ Kn}} = \text{const}, \qquad \text{Kn} = \frac{1}{\tau n\sigma} = \frac{1}{\tau_0 n_0 \sigma}. \tag{31}$$

Attractor for HS

For HS, the system stays at the same $\tilde{w} \Rightarrow \chi(\tilde{w})$ can be obtained by considering multiple systems.

 $\blacktriangleright \chi(\tilde{w})$ is very similar for partons vs ideal vs HS.

Setup

microscopic description in terms of averaged on-shell phase-space distribution:

$$f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{\mathrm{d}N}{\mathrm{d}^3 x \,\mathrm{d}^3 p}(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y)$$
(32)

boost invariance: (2+1) + 3D description

time evolution: Boltzmann equation in relaxation time approximation

$$p^{\mu}\partial_{\mu}f = C_{RTA}[f] = \frac{p_{\mu}u^{\mu}}{\tau_R}(f_{eq} - f) , \quad \tau_R = 5\frac{\eta}{s}T^{-1}$$
 (33)

specify initial energy density to be isotropic Gaussian with anisotropic perturbation

$$\epsilon(\tau_0, \mathbf{x}_{\perp}) = \frac{\mathrm{d}E_{\perp}^{(0)}}{\mathrm{d}\eta} \frac{1}{\pi R^2 \tau_0} \exp\left(-\frac{x_{\perp}^2}{R^2}\right) \left\{1 + \delta_n \exp\left(-\frac{x_{\perp}^2}{2R^2}\right) \left(\frac{x_{\perp}}{R}\right)^n \cos(n\phi_x)\right\}$$
(34)

Eccentricity Dependence

- almost no \(\epsilon_n\)-dependence, only small negative/positive trend (except cubic response)
- in conflict with conventional knowledge (upwards trend); even in identical setup Niemi, Eskola, Paatelainen PRC 93 (2016) 024907 Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901
 cross-checked this also with e.g. hydro Image: Conversion of the set of th
 - **a**ttributed to other features of specific initial state; not fully described by ϵ_n ? ³⁸/³²

Opacity Dependence

- linear order results have different ranges of validity for different v_n due to peculiarities of small- $\hat{\gamma}$ -behaviour
- \blacktriangleright agreement with previous results in identical setup up to moderate $\hat{\gamma}$

Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

extension to higher $\hat{\gamma}$, clear signs of saturation

Pre-equilibrium "running" of eccentricity

Due to inhomogeneous cooling, eccentricity decays in pre-equilibrium phase.
 The full 0 + 1D "running" of \$\varepsilon_n\$ is: [\$\gamma_{\mathbf{RKT}} = 4/9\$, \$\gamma_{\mathbf{MIS}}\$ \simeq 0.526]

$$\frac{\varepsilon_n(\tau \to \infty)}{\varepsilon_n(\tau \to 0)} = \frac{\left(1 - \frac{\gamma}{4}\right)^{\frac{n}{2} + 2}}{\left(1 - \frac{\gamma}{6}\right)^{n+1}}.$$
(35)

Attractro scaling of hydro

- Due to the pre-equilibrium evolution, $\varepsilon_2(\tau = \tau_T) < \varepsilon_2(\tau = \tau_0)$.
- ► Since *ε_n* running is different for hydro than for RKT, the response in *ε_p* will also be different.
- The solution is to acknowledge that the pre-equilibrium evolution is governed by the attractor solution,

$$\tau^{\frac{\frac{4}{3}-\gamma}{1-\gamma/4}}e\sim \text{const.}$$

A way to cure the hydro vs RKT discrepancy is to perform "backwards running" on hydro, such that hydro and RKT agree in the "hydro" regime (when $\tilde{w} \to \infty$):

$$\lim_{\tau \to \infty} e_{\text{hydro}}(\tau) = \lim_{\tau \to \infty} e_{\text{RKT}}(\tau).$$
(36)

41 / 32

Attractro scaling of hydro

In general, one may write

$$e(\tau) = e_{\infty} \mathcal{E}(\tilde{w}), \qquad e_{\infty} = aT_{\infty}^4, \qquad T_{\infty} = 4\pi(\eta/s)\tilde{w}_{\infty}/\tau, \qquad (37)$$

where \tilde{w}_{∞} depends on γ (= 4/9 for RKT and $\simeq 0.526$ for hydro):

$$\tilde{w}_{\infty} = \frac{\mathcal{E}^{1/4}(\tilde{w})}{\tilde{w}} = \left(\tau_0^{(\frac{1}{3} - \frac{\gamma}{4})/(1 - \gamma/4)} \frac{(e_0/a)^{1/4}}{4\pi\eta/s}\right)^{1 - \gamma/4} C_{\infty}^{1/4} \tau^{2/3}.$$
 (38)

• Since $\mathcal{E}(\tilde{w}) \to 1$ when $\tilde{w} \to 1$, matching is ensured if $\tilde{w}_{\infty}^{\text{hydro}} = \tilde{w}_{\infty}^{\text{RKT}}$, leading to $e_{0,\gamma} = \left[\left(\frac{4\pi\eta/s}{\tau_0} a^{1/4} \right)^{\frac{1}{2} - \frac{9\gamma}{8}} \left(\frac{C_{\infty,\text{RTA}}}{C_{\infty,\gamma}} \right)^{9/8} e_{0,\text{RTA}} \right]^{\frac{8/9}{1-\gamma/4}}.$ (39)

• The ideal hydro limit can be taken by noting that $e_{ideal}(\tau) = e_0 \tau_0^{4/3} / \tau^{4/3}$:

$$e_{0,\text{ideal}} = a^{1/9} \left(\frac{4\pi\eta}{s}\right)^{4/9} C_{\infty,\text{RTA}} \tau_0^{-4/9} e_{0,\text{RTA}}^{8/9},\tag{40}$$

where η/s acts as a free parameter to tune e.g. the final $dE_{\perp}/d\eta$, reminiscent of the absence of free-streaming in the $\tau \to 0$ limit of ideal hydro.

Attractro scaling of hydro

- ▶ vHLLE and RTA are in excellent agreement at large $\hat{\gamma}$.
- The ideal hydro limit now agrees with the $\hat{\gamma} \to \infty$ of both RTA and vHLLE.

Naïve hydro: Opacity Dependence in Comparison to Hydro

At τ₀ = 0.01R, hydro and kinetic results seem to converge at large opacities.
 At smaller τ₀ = 10⁻⁶R, the large opacity limits of hydro and kinetic theory do not match.

Non-commutativity of the Limits $\tau_0 \to 0$ and $\hat{\gamma} \to \infty$

Discrepancy from cutting out pre-equilibrium period; convergence only in unphysical order of limits (\$\hat{\gamma}\$ → ∞, then \$\tau_0\$ → 0\$)
 ■ Need non-equilibrium description of early time dynamics even at large \$\hat{\gamma}\$.

Small τ_0 : curves plateau at physical large-opacity asymptote in the limit $\tau_0 \rightarrow 0$. Fixed τ_0 : For $\tau_{eq} \leq \tau_0$, responses reach the (unphysical) ideal hydro limit $\hat{\gamma} \rightarrow \infty$.

(FD)RLB approach

First, we introduce the reduced distribution $\mathcal{F}_{\mathrm{RLB}}$ via

$$\mathcal{F}_{\rm RLB} = \frac{\pi \nu_{\rm eff} R^2 \tau_0}{(2\pi)^3} \left(\frac{\mathrm{d}E_{\perp}^{(0)}}{\mathrm{d}\eta} \right)^{-1} \int_0^\infty \mathrm{d}p^\tau \left(p^\tau \right)^3, \tag{41}$$

such that the Boltzmann eq. becomes

$$\left(\frac{\partial}{\partial\bar{\tau}} + \mathbf{v}_{\perp} \cdot \overline{\nabla} + \frac{1 + v_z^2}{\tau}\right) \mathcal{F}_{\mathrm{RLB}} - \frac{1}{\bar{\tau}} \frac{\partial [v_z (1 - v_z^2) \mathcal{F}_{\mathrm{RLB}}]}{\partial v_z} = -\hat{\gamma} (v^{\mu} u_{\mu}) \overline{T} (\mathcal{F}_{\mathrm{RLB}} - \mathcal{F}_{\mathrm{RLB}}^{eq}), \quad (42)$$

with

$$\bar{\tau} = \frac{\tau}{\tau_0^{1/4} R^{3/4}}, \qquad \bar{\mathbf{x}}_{\perp} = \frac{\mathbf{x}_{\perp}}{\tau_0^{1/4} R^{3/4}}, \qquad \bar{\epsilon} = \frac{\tau_0 \pi R^2 \epsilon}{dE_{\perp}^{(0)}/d\eta}, \qquad \overline{T} = \left(\frac{\tau_0 \pi R^2 \frac{\pi^2}{30} \nu_{\text{eff}}}{dE_{\perp}^{(0)}/d\eta}\right)^{1/4} T.$$
(43)

Time stepping $\partial_{\tau} \mathcal{F}_{RLB} = L[\mathcal{F}_{RLB}]$ performed using RK-3 with 2 intermediate stages.

Advection performed in an upwind-biased manner using finite differences,

$$c_1 \left(\frac{\partial \mathcal{F}}{\partial x_1}\right)_{s,r} = \frac{\mathbb{F}_{s+\frac{1}{2},r} - \mathbb{F}_{s-\frac{1}{2},r}}{\delta x_1},\tag{44}$$

where the fluxes $\mathbb{F}_{s\pm\frac{1}{2}}$ are computed using the WENO-5 scheme.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ○ 46 / 32

(FD)RLB: Momentum space discretization

- $\phi_p \to \phi_{p;i} = \phi_0 + \frac{2\pi}{Q_{\phi_p}}(j \frac{1}{2})$
- $v_z \rightarrow v_{z;j} \equiv \text{roots of } P_{Q_z}(v_{z;j})$

 \blacktriangleright v_z derivative can be obtained by projection onto the Legendre polynomials:

$$\mathcal{F}_{\mathrm{RLB}} = \sum_{\ell=0}^{\infty} \mathcal{F}_{\ell}^{\mathrm{RLB}} P_{\ell}(v_{z}) \Rightarrow \left[\frac{\partial [v_{z}(1-v_{z}^{2})\mathcal{F}_{\mathrm{RLB}}]}{\partial v_{z}} \right] = \int_{-1}^{1} dv_{z}' \,\mathcal{K}_{P}(v_{z},v_{z}')\mathcal{F}(v_{z}'), \qquad (45)$$

where

$$\mathcal{K}_{P}(v_{z}, v_{z}') = \sum_{m=1}^{\infty} \frac{m(m+1)}{2} P_{m}(v_{z}) \left[\frac{m+2}{2m+3} P_{m+2}(v_{z}') - \left(\frac{m}{2m-1} - \frac{m+1}{2m+3} \right) P_{m}(v_{z}') - \frac{m-1}{2m-1} P_{m-2}(v_{z}') \right].$$
 (46)

After discretization, we may write

$$\left[\frac{\partial [v_z(1-v_z^2)\mathcal{F}_{\text{RLB}}]}{\partial v_z}\right]_{ji} = \sum_{j'=1}^{Q_z} \mathcal{K}_{j,j'}^P \mathcal{F}_{j'i}^{\text{RLB}},\tag{47}$$

where the $Q_z \times Q_z$ matrix $\mathcal{P}_{j,j'}$ can be computed before runtime.

47 / 32

[Mysovskikh trigonometric quadrature]

[Gauss-Legendre quadrature]

Small $\hat{\gamma}$: Free-streaming coordinates

At small $\hat{\gamma}$, it is convenient to employ the following free-streaming coordinates to parametrise the momentum space:

$$p_{\rm fs}^{\tau} = p^{\tau} \Delta, \qquad v_{z}^{\rm fs} = \frac{\tau v_{z}}{\tau_{0} \Delta}, \qquad \Delta = \sqrt{1 + \left(\frac{\tau^{2}}{\tau_{0}^{2}} - 1\right) v_{z}^{2}},$$

$$p^{\tau} = p_{\rm fs}^{\tau} \Delta_{\rm fs}, \qquad v_{z} = \frac{\tau_{0} v_{z}^{\rm fs}}{\tau \Delta_{\rm fs}}, \qquad \Delta_{\rm fs} = \sqrt{1 - \left(1 - \frac{\tau_{0}^{2}}{\tau^{2}}\right) v_{z;\rm fs}^{2}}.$$
(48)

Energy-weighted observables can be computed starting from the reduced distribution

$$\mathcal{F}_{\rm fs} = \frac{\pi \nu_{\rm eff} R^2 \tau_0}{(2\pi)^3} \left(\frac{\mathrm{d}E_{\perp}^{(0)}}{\mathrm{d}\eta} \right)^{-1} \int_0^\infty \mathrm{d}p_{\rm fs}^\tau \left(p_{\rm fs}^\tau \right)^3 f, \tag{49}$$

which satisfies

$$\frac{\partial \mathcal{F}_{\rm fs}}{\partial \bar{\tau}} + \frac{1}{\Delta_{\rm fs}} \boldsymbol{v}_{\perp;\rm fs} \cdot \overline{\nabla}_{\perp} \mathcal{F}_{\rm fs} = -\hat{\gamma} (v^{\mu} u_{\mu}) \overline{T} (\mathcal{F}_{\rm fs} - \mathcal{F}_{\rm fs}^{eq}).$$
(50)

The only change to RLB is that v_z is now discretized in logarithmic scale:

$$v_{z;j}^{\text{fs}} = \frac{1}{A} \tanh \chi_j, \qquad \chi_j = \left(\frac{2j-1}{Q_z} - 1\right) \operatorname{arctanh} A,$$
 (51)

where 0 < A < 1.

• The v_z^{fs} integration is performed using the rectangle method:

$$\int_{-1}^{1} dv_{z}^{\mathrm{fs}} h(v_{z}^{\mathrm{fs}}) \to \sum_{j=1}^{Q_{z}} w_{j}^{\mathrm{fs}} h(v_{z;j}^{\mathrm{fs}}), \qquad w_{j}^{\mathrm{fs}} = \frac{2\mathrm{arctanh}A}{AQ_{z}\cosh^{2}\chi_{j}}.$$
(52)

Initial conditions: Romatschke-Strickland distribution

The system is initialized using the Romatschke-Strickland distribution for BE statistics,

$$f_{\rm RS} = \left\{ \exp\left[\frac{1}{\Lambda}\sqrt{(p \cdot u)^2 + \xi_0 (p \cdot \hat{\eta})^2}\right] - 1 \right\}^{-1},$$
(53)

where $\Lambda \equiv \Lambda(\mathbf{x}_{\perp})$ satisfies

$$\Lambda^{4}(\mathbf{x}_{\perp}) = 2T^{4}(\tau_{0}, \mathbf{x}_{\perp}) \left(\frac{\arctan\sqrt{\xi_{0}}}{\sqrt{\xi_{0}}} + \frac{1}{1+\xi_{0}} \right)^{-1},$$
(54)

• The anisotropy parameter ξ_0 can be used to set $\mathcal{P}_{L;0}/\mathcal{P}_{T;0}$ via

$$\frac{\mathcal{P}_{L;0}}{\mathcal{P}_{T;0}} = \frac{2}{1+\xi_0} \frac{(1+\xi_0)\frac{\arctan\sqrt{\xi_0}}{\sqrt{\xi_0}} - 1}{1+(\xi_0-1)\frac{\arctan\sqrt{\xi_0}}{\sqrt{\xi_0}}}.$$
(55)

- $\mathcal{P}_{L;0}/\mathcal{P}_{T;0}=0$ is achieved when $\xi_0 \to \infty$.
- For $\hat{\gamma} \geq 2$ (RLB), we used $\xi_0 = 20$ ($\mathcal{P}_L / \mathcal{P}_T =$);
- For $\hat{\gamma} \leq 2$ (FS), we used $\xi_0 = 100 (\mathcal{P}_L/\mathcal{P}_T =)$.
- For both RLB and FS, we have

$$\mathcal{F}_{\mathrm{RLB}}^{\mathrm{RS}} = \mathcal{F}_{\mathrm{fs}}^{\mathrm{RS}} = \frac{\overline{\epsilon}/2\pi}{(1+\xi_0 v_z^2)^2} \left(\frac{\arctan\sqrt{\xi_0}}{\sqrt{\xi_0}} + \frac{1}{1+\xi_0} \right)^{-1}.$$
(56)

Eccentricity Dependence

lmost no ϵ_n -dependence

in conflict with conventional knowledge (upwards trend); even in identical setup

Niemi, Eskola, Paatelainen PRC 93 (2016) 024907

Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

- cross-checked this also with e.g. hydro
 - attributed to other features of specific initial state; not fully described by $\epsilon_n? \circ \circ \circ$

Eccentricity Dependence in vHLLE

similar to kinetic results: almost constant, negative trend at large opacities

Solutions in opacity expansion <u>zeroth order</u> $p^{\mu}\partial_{\mu}f^{(0)} = 0$: $[t(\tau, \tau_0, y - \eta) = \tau \cosh(y - \eta) - \sqrt{\tau_0^2 + \tau^2 \sinh^2(y - \eta)}]$

$$f^{(0)}(\tau, \mathbf{x}_{\perp}, \mathbf{p}_{\perp}, y - \eta) = f^{(0)}\left(\tau_0, \mathbf{x}_{\perp} - \mathbf{v}_{\perp}t(\tau, \tau_0, y - \eta), \mathbf{p}_{\perp}, \operatorname{arsinh}\left(\frac{\tau}{\tau_0}\sinh(y - \eta)\right)\right)$$

<u>first order</u> $p^{\mu}\partial_{\mu}f^{(1)} = C[f^{(0)}]$:

$$f^{(1)}(\tau, \mathbf{x}_{\perp}, \mathbf{p}_{\perp}, y - \eta) = \int_{\tau_0}^{\tau} \mathrm{d}\tau' \left(\frac{C[f^{(0)}]}{p^{\tau}}\right) (\tau', \mathbf{x}_{\perp}', \mathbf{p}_{\perp}, y - \eta')$$

<u>collision kernel</u>: find local rest frame and temperature using Landau matching to compute $C_{RTA}[f^{(0)}] = \frac{p_{\mu}u^{\mu}T}{5\eta/s}(f_{eq} - f)$ where $f_{eq} = [\exp(p_{\mu}u^{\mu}/T) - 1]^{-1}$

$$T^{\mu\nu} = \nu_{\rm eff} \tau \int \frac{{\rm d}^3 p}{(2\pi)^3 p^\tau} p^\mu p^\nu f^{(0)} \qquad \epsilon u^\mu = u_\nu T^{\nu\mu} \qquad \epsilon = \frac{\nu_{\rm eff} \pi^2}{30} T^4$$

<u>free-streamed</u> $\delta \epsilon$ -cosine:

$$|\mathbf{x}_{\perp} - \mathbf{v}_{\perp}\tau|^{n}\cos(n\phi_{\mathbf{x}_{\perp} - \mathbf{v}_{\perp}\tau}) = \sum_{j=0}^{n} \binom{n}{j} x_{\perp}^{n-j} (-\tau)^{j} \cos[n\phi_{\mathbf{x}_{\perp}} + j(\phi_{\mathbf{x}_{\perp}} - \phi_{\mathbf{v}_{\perp}})]$$

Computing observables

jacobian from milne coordinates

$$\frac{\mathrm{d}N}{\mathrm{d}^2 p_{\perp} \mathrm{d}y}(\tau) = \nu_{\mathrm{eff}} \int \mathrm{d}^2 x_{\perp} \,\mathrm{d}\eta \,\,\tau \,p^{\tau} \,f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y)$$

 \blacktriangleright extract moments relevant for flow harmonics v_n :

$$V_{mn} = \int d^2 p_T \ p_T^m e^{in\phi_p} \frac{dN}{d^2 p_T dy} = V_{mn}^{(0)} + V_{mn}^{(1)}, \qquad v_n^{(m)} = \frac{V_{m,n}}{V_{m,0}} = \frac{\delta V_{mn}^{(1)}}{V_{m,0}^{(0)}}$$

$$\Rightarrow V_{mn}^{(1)}(\tau) = \int_{\mathbf{p}_{\perp}} e^{in\phi_p} p_{\perp}^m \int_{\mathbf{x}_{\perp}} \int \mathrm{d}\eta \int_{\tau_0}^{\tau} \mathrm{d}\tau' \ \tau' \frac{\nu_{\mathrm{eff}}}{(2\pi)^3} \frac{p_{\mu}u^{\mu}}{\tau_R} (f_{eq} - f) \equiv V_{mn}^{(1,eq)} - V_{mn}^{(1,0)}$$

▶ in total: 6d integral over $\tau', \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}$. 4 computed analytically, 2 numerically

$$\underbrace{V_{mn}^{(1,0)}}_{\text{decay of }f^{(0)}} = -\hat{\gamma}\delta_n V_{m0}^{(0)} \ \mathcal{P}_{mn}(\tilde{\tau}) \qquad \underbrace{V_{mn}^{(1,eq)}}_{\text{buildup of }f_{eq}} = +\hat{\gamma}\delta_n \nu_{\text{eff}} R^{-m} \left(\nu_{\text{eff}}^{-1} \frac{\mathrm{d}E_{\perp}^{(0)}}{\mathrm{d}\eta} R\right)^{\frac{m+3}{4}} \mathcal{Q}_{mn}(\tilde{\tau})$$