Flow measurements from large to small systems What data tell us

Lucia Anna Tarasovičová QCD Challenges from pp to AA collisions Münster 04.09.2024

Long-range corrections with ridge

pp

JHEP 1009:091,2010

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

v₂ from large to small collision systems

Non-zero flow coefficients measured in small collision systems Consistent with peripheral Pb—Pb collisions

Phys. Rev. Lett. 123, 142301 (2019)

Flow extraction methods (non-flow treatments)

Fourier fit (FF)

- 2 particle correlations
- Long range in η
- Direct fit with a Fourier expansion

- 2 particle correlations
- Long range in η
- HM = convolution of scaledLM + flow modulation

Scalar product (SP)

Flow coefficients defined via Q-vectors in sub-events

- Cumulants
- Multi-particle correlations

$$v_n(\eta, p_t) = \frac{\langle Q_n u_{n,i}^*(\eta, p_t) \rangle}{2\sqrt{\langle Q_n^a Q_n^{b^*} \rangle}} \qquad v_n\{2\} = \sqrt{c_n\{2\}}, \\ v_n\{4\} = \sqrt[4]{-c_n\{4\}},$$

$$Q_n = \sum_i u_{n,i}$$
 $u_{n,i} = e^{in\phi_i}$

Template fit (TF)

Q-cumulant (Q)

Event Plane (EP)

Event plane is evaluated • Flow coefficients:

$$v_n = \langle cos[n(\varphi - \Psi_n)] \rangle$$

Au—Au collisions at different energies

Collision energy dependence

- dynamics
- Flow fluctuations:

 \mathbf{O}

- Comparable with Pb—Pb
- Dominated by initial state eccentricity fluctuations

Phys.Rev.Lett. 129 (2022) 25, 252301

• Amplitude increase with collision energy - reflects the change in the expansion

Weakly dependent on the beam energy and centrality - Gaussian-like nature

Collision energy dependence

Collision energy dependence

Phys.Lett.B 839 (2023) 137755

- Anti-correlation of v_2 and v_3 and correlation of
 - v_2 and v_4
 - Consistent with the initial eccentricity correlations
- Weak beam energy dependence
 - Consistent with LHC measurement

Consistent with each other -> consistent consistent with each other -> consistent to low the deconfinement picture down to low with deconfinement picture down to low fucturations fucturations Au-Au collisions at different energies

Different initial geometries

Intrinsic initial geometry dependence

Intrinsic initial geometry dependence II

Phys.Rev.Lett. 130 (2023) 24, 242301

- Significant discrepancy between the results from two experiments
- STAR:
 - v_2 is smaller than measured by PHENIX, but the same system dependence
 - $\sim v_3$ 3 times larger than measured by PHENIX and system independent
 - Not described by hydrodynamical models

12

Different initial geometri strong dependence on initial geometrs, further Strong dependence by both experiments needed confirmed by both measurements needed

Hard scattering influence and jet modification

Event scale dependent in p-Pb

- Presence of a jet slight influence on the flow
- Low and high $p_{\rm T}$
 - In agreement with MB, independent on multiplicity
- Intermediate $p_{\rm T}$

Lower v_2 than in MB, slight decrease towards low multiplicities in all samples

Jet particle flow in p—Pb

FF

arXiv:2212.12609

eV, 20–60%			
le	v ₂	(×	0.6)
.6)			

- Non-zero jet v_2 in p—Pb and Pb—Pb collisions
 - Smaller magnitude than inclusive V_2
 - No dependence on $p_{\rm T}^{assoc}$
 - At high $p_{\rm T}$ similar magnitude as in Pb-Pb
- v_2 driven by the non-equilibrium anisotropic parton escape mechanism

10

Event scale dependent in pp

Jet particle flow in pp

- No multiplicity dependence
- v_2 of h^J compatible with zero

 - The collective system is too small to influence jets no energy loss

• The inclusive v_2 is not driven by jet fragmentation, but rather by bulk

Jet modulation in pp

Consistent with direct jet quenching searches

- Jet peak width as a function of multiplicity
- No broadening as in Pb—Pb
- Shape qualitatively described by models

Hard scattering influence and hard modification of the event is not influenced by a hard Soft part of the event is not influenced quenching soft part of the event is not influenced reader in point of the event is not influenced provide the collection scale, but zero jet particle v₂ and no jet quenching in PP -> the jets escape before the collectivity develops? No deconfinement in PP? Bigger in P

Flow of (identified) particles

Flow fluctuations in p—Pb

- At high $p_{\rm T}$ influence of jet non-flow
 - Suppressed with jet veto/ 6 particle correlations
- High mult. p—Pb collisions:

SP

- At high p_{T} in agreement with peripheral Pb—Pb
- At low p_{T} higher than peripheral Pb—Pb
- No particle species dependence initial state fluctuations

JHEP05(2023)007

Identified v₂ in Pb—Pb and p—Pb

Phys. Rev. Lett. 121, 082301

- In Pb—Pb:
 - Do follows the mass ordering and meson group
- In p—Pb:
 - D^o follows the meson group
 - Slightly lower v_2 at low p_T (besides mass ordering)
- The collective behaviour of charm quarks is weaker than that of the lightflavour quarks

Identified v₂ in Pb—Pb, p—Pb, pp

- Similar behaviour in all collision systems
- Mass ordering at low $p_{\rm T}$
- Baryon—meson splitting and grouping at intermediate $p_{\rm T}$
- \bigcirc Not sufficient statistics at high $p_{\rm T}$ in small systems

Model comparison in p—Pb

TF

- Mass ordering at low $p_{\rm T}$ in both models The splitting also in both models
- Amplitude correct when coalescence on

ALI-PREL-503272

Multiplicity dependence in p—Pb

• Mass ordering at low $p_{\rm T}$ - preservers down to lowest multiplicities The splitting and grouping seams to disappear at low multiplicity • The amplitude is smaller only at the lowest multiplicity

Multiplicity dependence in p—Pb

The species ratio is not multiplicity dependent • The aptitude in different multiplicity classes is scaled the same for different species

TF

Flow of (identified) pare, and grouping The baryon-meson splitting and systems at lower The baryon-meson splitting systems with the persist in small collision system with persist in small collision system with coalescence picture ersist in small compositions at the consistent with the nultiplicities - consistent with the coalescence picture

"Exotic" collision systems

Down to the lowest multiplicities

FF

- Non-zero ridge yield at extremely low multiplicities in pp collisions
- At multiplicity within large uncertainties compatible with $e^+ + e^-$
- At multiplicity 8-24 pp larger than $e^+ + e^- -> 5\sigma$ (91GeV); 6.3 σ (183-209 GeV)
- None of the model describes the data

Down to the smallest systems - yPb

- Smaller v_2 , but compatible v_3 ; Not reliable at high p_T
- CGC model in fair agreement not the same parameters as for HF comparisons

Phys. Rev. C. 104 (2021) 014903

No hydro model - expectation of similar v_2 as in p—Pb (vector meson — Pb collision)

Down to the smallest systems - γp

Phys. Lett. B 844 (2023) 137905

- Larger v_2 in γp as in p-Pb
- In agreement with models without collective
 expansion - no signs of collectivity
- Higher v_2 at higher p_T possible proton shape fluctuations

Flow measurement within a jet

- Short range correlations $\sim 1/N_{ch}^{j}$
 - Observed up to 80 and described by models
- Deviations at larger jet multiplicities

Indication of an onset of novel QCD phenomena related to non-perturbative dynamics of a parton fragmenting in the vacuum?

arXiv:2312.17103, accepted to PRL

 \circ v₂ measured inside jets, in coordinates w.r.t. jet axis

• 5σ deviation from models

"Exotic" collision syst to the lowest Long range ridge down to the lowest Long range ridge down to the lowest inside jet not explain multiplicities and v2 inside jet not explainable Humping and v2 manue jet not expramatine What is really with back-to-back correlations: what is really www.uaun-waun.comectaunons.www.effects? the limit of observing collective effects?

- Different collision energies: Consistent with each other -> consistent with deconfined system down to low collision energies with initial-state-driven fluctuations
- Strong dependence on initial geometry not confirmed by both experiments, further measurements needed
- Soft part of the event is not influenced by a hard scale, but zero jet particle v_2 and no jet quenching in pp
- The baryon-meson splitting and grouping persist in small collision systems at lower multiplicities - consistent with the coalescence picture
- Long range ridge down to the lowest multiplicities and v_2 inside jet not explainable with back-to-back correlations

Conclusion

Outlook

- Can be the initial geometry dependence confirmed by another analysis?
- Can be the deconfinement formation in small systems be actually concluded?
- Do the jets escape before the collectivity develops in pp?
- Is the collective system bigger in p—Pb, so that non-zero jet particle flow is formed?
- What is really a limit of observing collective effects?

Thank you for your attention!

L.A. Tarasovičová, UPJŠ

Back up

NCQ-energy dependence

Phys. Rev. C 93, 014907 (2016)

Jet flow in pp

- $h^{UE} h^{UE}(AllEvents)$: 2PC where both tracks are h^{UE} . About 14% of *h*-*h* 2PC pairs are removed by the abovementioned rejection.
- $h^{UE} h^{UE}$ (*NoJets*): 2PC using events with no jets with $p_T^G > 15$ GeV.
- $h^{UE} h^{UE}$ (*WithJets*): 2PC using events with at least one jet with $p_T^G > 15$ GeV.
- $h^{UE} h^J$: 2PC performed between h^{UE} and h^J .

Event scale dependent in p-Pb

Eur. Phys. J. C 80 (2020) 73

L.A. Tarasovičová, UPJŠ

41

Intrinsic initial geometry dependence III

Flow coefficients remeasured with a different method The same result

Phys. Rev. C 105, 024901

Identified v₂ in Pb—Pb and p—Pb

L.A. Tarasovičová, UPJŠ

ODDVEDECKA FARIL

Phys. Rev. Lett. 121, 082301

HF flow in p—Pb

https://arxiv.org/pdf/1810.01473

Flow measurement within a jet

Flow measurement within a jet

Flow extraction methods (non-flow treatments)

Fourier fit (FF)

- 2 particle correlations
- Long range in η
- Direct fit with a Fourier expansion

Template fit (TF)

- 2 particle correlations
- Long range in η
- HM = convolution of scaled
 LM + flow modulation

