



www.ifin.ro

An overview on some global trends observed in heavy ion collisions based on experimental results from AGS up to LHC energies and on similarities between pp and Pb-Pb collisions at LHC

Results obtained in collaboration with A. Pop, C. Andrei, I. Berceanu, A. Lindner, M. Tarzila



Mihai Petrovici, QCD Challenges, 2-6 September 2024, Munster, Germany

## Outline

### > Introduction

- $\sim <p_T > /[(dN/dy)/S_J]^{1/2}$  centrality and collision energy dependence
- $\succ$  [(dN/dy)/S\_]<sup>1/2</sup> scaling
- $\rightarrow (dE_T/dy)/(dN/dy) (dN/dy)/S_{\perp}$  correlation
- > The slope of  $\varepsilon_{B_i} \cdot \tau (dN/dy)/S_{\perp}$  correlation energy dependence
- >  $(dN/dy)^{(strange and multi strange)}/(dN/dy) (dN/dy)/S_{\perp}$  correlation
- Similar studies for pp collisions and comparison with Pb-Pb collisions
- Concluding remark

### 50<sup>th</sup> anniversary of high energy heavy-ion

- The high-energy heavy-ion program at LBL has started in summer 1974 (CERN Courier, June 1974)
- A University of Frankfurt group has exposed their AgCl detectors to various heavy-ion beams at energies from 250 MeV/A to 2.1 GeV/A. The observed peaks in the angular distributions of light fragments that moved with beam energy in a manner suggestive of these particles arising from shock waves, causing considerable excitement in the nuclear science community.
- After being used for several high energy experiments, the LBL streamer chamber used in the collision of 1.8-GeV/nucleon Ar on a lead oxide target, evidenced charged particle multiplicities of over 100 in such reactions.



https://escholarship.org/uc/item/8bw3436f

# **Could we unravel** the **History of the Universe**

0-10

10-15 m

**Big Bang** 

Plasma

**Ouark-Gluon** Protons& Neutrons 1013K. 10-6s 1012K, 10-4s

110<sup>-15</sup> m

Low-mass Neutral Nuclei Atoms 109K, 3 min 4000K, 105y

Star Formation 109y

Heavy Elements >109y



Today

# **based on experiments** in terrestrial laboratories ?

How to produce extreme states of nuclear matter in terrestrial laboratories ?





### **Physics motivation**



### **Theory predictions**

### String percolation

T.S.Biro, H.B.Nielsen and J.Knoll, Nucl.Phys. B245(1984)449 J.Dias de Deus and C. Pajares, Phys.Lett. B695(2011)211 I. Bautista et al., Revista Mexicana de Fisica 65(2019)197

$$\begin{split} \frac{dN}{dy} &= F(\eta)\bar{N}^s\mu\\ \eta &\equiv (r_0/R)^2\bar{N}^s \text{ - transverse string density; } \bar{N}^s \text{ - the average number of strings}\\ \mu &= (r_0/R)^2\bar{N}^s \text{ - transverse string density; } \mu \text{ - string multiplicity}\\ F(\eta) &\equiv \sqrt{\frac{1-e^{-\eta}}{\eta}}\\ \langle p_T^2 \rangle &= \langle p_T^2 \rangle_1 / F(\eta) \quad \langle p_T^2 \rangle_1 \text{ - average string transverse momentum}\\ \sqrt{\langle p_T^2 \rangle} / \sqrt{\langle dN/dy \rangle / S_\perp} \sim 1 / \sqrt{(1-e^{-\eta})} \end{split}$$

$$< p_T^2 > /[(dn/dy)/S_{\perp}] \propto < p_T^2 >_1 r_0^2 / \mu (1-e^{-\eta})$$

### CGC

### Local parton-hadron duality picture and dimensionality argument

- Y.L.Dokshitzer, V.A.Khoze and S.Troian, J.Phys.G 17 (1991) 1585
- T. Lappi, Eur.Phys.J. C71 (2011) 1699
- E. Levin and A.H. Rezaeian, Phys.Rev.D 83 (2011)114001

$$\langle p_T \rangle / \sqrt{\frac{dN}{dy} / S_\perp} \sim \frac{1}{n\sqrt{n}}$$

$$\downarrow$$

$$\langle p_T \rangle / \sqrt{\frac{dN}{dy} / S_\perp}$$

n - no. of charged particles from a gluon fragmentation

<u>decreases as a function of:</u> - collision energy

- <u>centrality</u>



M.Petrovici, A.Lindner and A.Pop, Phys. Rev. C 98(2018)024904

### **Experimental results**



### $[(dN/dy)/S_{\perp}]^{1/2}$ scaling



## $[(dN/dy)/S_{\perp}]^{1/2}$ scaling



M. Petrovici, A. Lindner and A. Pop, AIP Conf.Proc. 2076 (2019) 1, 040001

### Signature for phase transition ?



 $E/N \sim \epsilon/s = E_{fo}/S_{fo}$ ;  $s(T_0) = a(1/R_0^3)(dN/dy)$ 

### - AGS si SPS

•S. Chatterjee et al., Advances in High Energy Physics 2015, 349013 (2015).

### - BES

•J. Adam et al. (STAR Collaboration), Phys. Rev. C 102, 034909 (2020).

### - RHIC 62.4 GeV and 200 GeV

- M. M. Aggarwal et al. (STAR Collaboration), Phys. Rev. C 83, 024901 (2011).
- •J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 98, 062301 (2007).
- •G. Agakishiev et al. (STAR Collaboration), Phys. Rev. Lett. 108, 072301 (2012).
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 96, 044904 (2017). RHIC, 62.4 si 200 GeV
- B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79, 034909 (2009), ALICE 2.76 TeV

### - ALICE 2.76 TeV

- •B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 111, 222301 (2013).
- •B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 728, 216 (2014); 734, 409 (2014).
- •B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79, 034909 (2009). ALICE 2.76 TeV

#### - ALICE 5.02 TeV

- •D. S. de Albuquerque, Ph.D. thesis (2019), CERN-THESIS-2019-135.
- •P. Kalinak for the ALICE Collaboration, European Physical Society Conference on High •Energy Physics, 5-12 July 2017, Venice, Italy, PoS(EPS-HEP2017)168 (2017), •https://pos.sissa.it/314/168/pdf.

•D. S. de Albuquerque for the ALICE Collaboration, Nucl. Phys. A 982, 823 (2019), XXVIIth •International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018).

- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 96, 044904 (2017). RHIC, 62.4 si 200 GeV • B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 88, 044910 (2013). - ALICE 5.02 TeV
- ١.

$$\frac{dN}{dy} \simeq \frac{3}{2} \frac{dN}{dy}^{(\pi^+ + \pi^-)} + 2 \frac{dN}{dy}^{(p+\bar{p},\Xi^- + \bar{\Xi}^+)} + \frac{dN}{dy}^{(K^+ + K^-,\Lambda + \bar{\Lambda},\Omega^- + \bar{\Omega}^+)} + 2 \frac{dN}{dy}^{K_S^0} + 2 \frac{dN}{dy}^{(\Sigma^+ + \Sigma^-)} + \frac{dN}{dy}^{(\Sigma^+ + \bar{\Sigma}^-)} + 2 \frac{dN}{dy}^{(\Sigma^- + \bar{\Sigma}^-)} + 2 \frac{$$

for

$$\frac{dE_T}{dy} \simeq \frac{3}{2} (\langle m_T \rangle \frac{dN}{dy})^{(\pi^+ + \pi^-)} + 2(\langle m_T \rangle \frac{dN}{dy})^{(p + \bar{p}, \Xi^- + \bar{\Xi}^+)} + (\langle m_T \rangle \frac{dN}{dy})^{(K^+ + K^-, \Lambda + \bar{\Lambda}, \Omega^- + \bar{\Omega}^+)} + 2(\langle m_T \rangle \frac{dN}{dy})^{K_S^0} + 2(\langle m_T \rangle \frac{dN}{dy})^{(\Sigma^+ + \Sigma^-)} + 2(\langle m_T \rangle \frac{dN}{dy})^{(\Sigma^+ + \Sigma^-$$

$$\langle m_T \rangle - \rangle \langle m_T \rangle - m_0$$
- for baryonsRHIC energies: $\langle m_T \rangle - \rangle \langle m_T \rangle + m_0$ - for antibaryons $\langle m_T \rangle$ - for other particles

### $(dE_T/dy)/(dN/dy) - (dN/dy)/S_{\perp}$ correlation



# $(dE_T/dy)/(dN/dy) - (dN/dy)/S_{\perp}$ correlation - core-corona $\pi^{\pm}$ , $K^{\pm}$ , p, pbar and their neutrals



 $\varepsilon_{B_i}$  - (dN/dy)/S<sub>1</sub> correlation for A-A - centrality dependence

 $\varepsilon_{Bi} \cdot \tau = (dE_T/dy)/S_{\perp}$ 



M.Petrovici and A.Pop, Phys.Rev. C107(2023)034913

### Strangeness production - smoking gun of deconfinement

J.Rafelski and B.Muller, Phys.Rev.Lett. 48(1982)1066



K. Werner, Phys. Rev. C109(2024)014910

### Strangeness production - smoking gun of deconfinement



 $(dN/dy)^{(strange and multi strange)}/(dN/dy) - (dN/dy)/S_{\perp}$  correlation



 $(dN/dy)^{(strange and multi strange)}/(dN/dy) - (dN/dy)/S_{\perp}$  correlation central collisions



 $(dN/dy)^{(strange and multi strange antihadron)}/(dN/dy) - (dN/dy)/S_{\perp}$  correlation





### Do we see a new state of deconfined matter at LHC energies?



### Short review pp vs A-A @ LHC



C.Andrei et al., ALICE Week, PWG2-Soft Physics, 9.11.2010 C.Andrei et al., Paper draft, 14.03.2011

### Short review pp vs A-A @ LHC

 $z^{raw}$ 

0.7 - 1.3

1.4 - 2.0

2.1 - 2.9

3.0 - 4.1

4.2 - 5.1

5.2 - 6.2

6.3 - 7.4

7.5 - 8.6



C. Andrei for ALICE Collaboration, Nucl. Phys. A931(2014)888

### Short review pp vs A-A @ LHC





$$R_{pp} = 1 fm \cdot f_{pp} - \text{maximal radius for which the energy density} of the Yang-Mill fields is larger than  $\varepsilon = \alpha \Lambda_{QCD}^4 \ (\alpha \in [1, 10])$ 
$$S_{\perp}^{pp} = \pi R_{pp}^2$$
$$\alpha = 1 \qquad f_{pp} = \begin{cases} 0.387 + 0.0335x + 0.274x^2 - 0.0542x^3 & \text{if } x < 3.4 \\ 1.528 & \text{if } x > 2.4 \end{cases}$$$$

$$\begin{array}{c} x = 1 \\ x = (dN_g/dy)^{1/3} \\ dN_g/dy \approx dN/dy \end{array}$$
 1.538 if  $x \geq 3.4$ 

A. Bzdak et al., Phys.Rev. C87(2013)064906

McLarren, M. Praszalowicz and B. Schenke, Phys. Rev. C87(2013)064906

## A-A vs. pp @ LHC π, K, p



(PANIC2021), https://pos.sissa.it/380/197/.

## A-A vs. pp @ LHC $(dE_T/dy)/(dN/dy) - (dN/dy)/S_{\perp}$ and $\varepsilon_{Bj} - (dN/dy)/S_{\perp}$



M.Petrovici and A.Pop, Phys.Rev. C107(2023)034913

### A-A vs. pp @ LHC (dN/dy)<sup>(strange and multi strange)</sup>/(dN/dy) - (dN/dy)/S<sub>1</sub>



M. Petrovici and A. Pop, EuNPC 2022 A. Pop and M. Petrovici, arXiv:2402.19115[hep-ph]

Highest charged particle multiplicity in pp at midrapidity selected by "VOM" by ALICE Collaboration !!!

## $< p_T > / [(dN/dy)/S_{\perp}^{geom}]$



### What's next?



## **Concluding remark**



"We have found it of paramount importance that in order to progress we must recognize the ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty some most unsure, some nearly sure, none absolutely certain." <u>Richard Feynman</u> **Backup slides** 

### **Expectations based on QCD**

### QCD – non-Abelian gauge theory & asymptotic freedom

D.J.Gross, H.D.Politzer and F.Wilczek - Nobel Prize 2004

0.5

**QCD** - running coupling constant  $\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \frac{\alpha_s(\mu^2)}{12\pi}(33 - 2n_f)\log(Q^2/\mu^2)}$ 

**QCD** – intrinsic scale  $\Lambda^2 = \mu^2 exp[\frac{12\pi}{(33-2n_f)\alpha_s(\mu^2)}]$ 

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2n_f)\log(Q^2/\Lambda^2)}$$

 $\alpha_s$  is small  $\Rightarrow$  a perturbative description in terms of Quarks and Gluons interacting weekly



for  $Q^2 \sim \Lambda^2$ 

for  $Q^2 \gg \Lambda^2$ 

Quarks and Gluons arrange themselves in Strongly Bound Clusters - Hadrons

> Since  $\Lambda_{QCD} \sim 200 \text{ MeV}$  a phase transition is expected at:  $T \sim \Lambda_{QCD} \sim O(10^{12} \text{ K})$ or  $\rho_B \sim \Lambda_{QCD}^3 \sim 1 \text{ fm}^{-3}$



Strongly Bound Clusters Hadrons







Weekly interacting Quarks and Gluons



### pp vs. Pb-Pb @ LHC - $(dN/dy)/S_{\perp}$ scaling

| Observable                                                | α                          | species                                                                                               |
|-----------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------|
| $< p_T >= f([(dN/dy)/S_{\perp}]^{1/2}])$                  | 10                         | $\pi, \mathrm{K}^{\text{-}}, \mathrm{K}^{0}_{\mathrm{s}}, arLambda, arLambda, arLambda$               |
|                                                           | 1(low mult> 10(high mult.) | р                                                                                                     |
| $< dE_T/dy > / < dN/dy > = f([(dN/dy)/S_{\perp}]^{1/2}])$ | 10                         | $\pi, \mathrm{K}^{\text{-}}, \mathrm{K}^{0}_{\mathrm{s}}, \mathrm{p}, \ arLambda, arLambda, arLambda$ |
| Slope p <sub>T</sub> =f(mass)                             | 1                          | $\pi, \mathrm{K}^{\text{-}}, \mathrm{K}^{0}_{\mathrm{s}}, \mathrm{p}, \ arLambda, arLambda, arLambda$ |
| $<\beta_{\rm T}>$                                         | 1                          | $\pi, \mathrm{K}^{\text{-}}, \mathrm{K}^{0}_{\mathrm{s}}, \mathrm{p}, \ arLambda, arLambda, arLambda$ |
| $Y^{1s(ms)}/\langle dN/dy \rangle$                        | 1                          | $\mathrm{K}, \Lambda, \Xi, \Omega$                                                                    |

Why the offset of  $p_T = f(mass)$  and  $T^{f_0}_{kin}$  from BGBW fits do not scale ?



pp vs. Pb-Pb @ LHC

| System | $\sqrt{s_{NN}}$ (GeV) | Cen.<br>(%) | $\langle N_{ m part}  angle$ | $S_{\perp}^{ m geom}$ (fm <sup>2</sup> ) | $S_{\perp}^{ m var}$ (fm <sup>2</sup> ) | $f_{ m core}$   | $(S_{\perp}^{\text{geom}})^{\text{core}}$<br>(fm <sup>2</sup> ) | $(S_{\perp}^{ m var})^{ m core} \ ({ m fm}^2)$ | dN/dy              |
|--------|-----------------------|-------------|------------------------------|------------------------------------------|-----------------------------------------|-----------------|-----------------------------------------------------------------|------------------------------------------------|--------------------|
| Ph-Ph  | 2760                  | 0-5         | $3825 \pm 31$                | $166.9 \pm 0.7$                          | $170.7 \pm 0.7$                         | $0.94 \pm 0.00$ | $146.0 \pm 0.7$                                                 | $148.0 \pm 0.6$                                | $2837.0 \pm 144.0$ |
| 1010   | 2700                  | 5-10        | $329.4 \pm 4.9$              | $146.1 \pm 0.7$                          | $154.7 \pm 0.0$                         | $0.90 \pm 0.00$ | $121.9 \pm 0.7$                                                 | $126.5 \pm 0.5$                                | $2345.5 \pm 112.4$ |
|        |                       | 10-20       | $259.9 \pm 2.9$              | $119.8 \pm 0.8$                          | $132.4 \pm 0.6$                         | $0.86 \pm 0.00$ | $96.3 \pm 0.7$                                                  | $102.7 \pm 0.3$                                | $1763.2 \pm 84.8$  |
|        |                       | 20-30       | $185.4 \pm 3.9$              | $92.9 \pm 0.8$                           | $107.5 \pm 0.5$                         | $0.81 \pm 0.00$ | $71.5 \pm 0.8$                                                  | $78.4 \pm 0.3$                                 | $1195.8 \pm 54.2$  |
|        |                       | 30-40       | $128.1 \pm 3.3$              | $71.4 \pm 0.8$                           | $87.2 \pm 0.4$                          | $0.76 \pm 0.00$ | $52.4 \pm 0.8$                                                  | $59.7 \pm 0.2$                                 | $784.8 \pm 35.9$   |
|        |                       | 40–50       | $84.2 \pm 2.6$               | $53.7 \pm 0.8$                           | $70.3 \pm 0.3$                          | $0.70 \pm 0.00$ | $37.2 \pm 0.8$                                                  | $44.8 \pm 0.2$                                 | $482.7 \pm 21.4$   |
|        |                       | 50-60       | $52.1 \pm 2.0$               | $38.6 \pm 0.8$                           | $56.1 \pm 0.3$                          | $0.63 \pm 0.00$ | $24.7 \pm 0.9$                                                  | $33.1 \pm 0.1$                                 | $274.8 \pm 12.5$   |
|        |                       | 60–70       | $29.5 \pm 1.3$               | $25.7\pm0.8$                             | $43.6 \pm 0.2$                          | $0.54 \pm 0.00$ | $14.6 \pm 0.9$                                                  | $23.8 \pm 0.1$                                 | $141.8 \pm 5.4$    |
|        |                       | 70–80       | $14.9\pm0.6$                 | $14.2\pm0.8$                             | $30.8\pm0.2$                            | $0.43\pm0.00$   | $6.4\pm0.7$                                                     | $15.1 \pm 0.1$                                 | $67.2 \pm 3.0$     |
| Pb-Pb  | 5020                  | 0–5         | $385 \pm 2$                  | $170.2 \pm 0.7$                          | $174.2 \pm 0.7$                         | $0.94\pm0.00$   | $149.0 \pm 0.7$                                                 | $151.5 \pm 0.6$                                | $3320.6 \pm 131.4$ |
|        |                       | 5-10        | $333 \pm 4$                  | $149.2 \pm 0.7$                          | $158.5 \pm 0.6$                         | $0.90\pm0.00$   | $124.4 \pm 0.7$                                                 | $129.9 \pm 0.5$                                | $2698.7 \pm 117.2$ |
|        |                       | 10-20       | $263 \pm 4$                  | $122.4 \pm 0.8$                          | $135.8 \pm 0.6$                         | $0.86\pm0.00$   | $98.1 \pm 0.7$                                                  | $105.6 \pm 0.4$                                | $2042.5 \pm 84.7$  |
|        |                       | 20-30       | $188 \pm 3$                  | $94.9\pm0.8$                             | $110.5 \pm 0.5$                         | $0.82\pm0.00$   | $72.9\pm0.7$                                                    | $80.8\pm0.3$                                   | $1401.4 \pm 62.9$  |
|        |                       | 30–40       | $131 \pm 2$                  | $73.4 \pm 0.8$                           | $90.0 \pm 0.4$                          | $0.77 \pm 0.00$ | $53.8\pm0.8$                                                    | $61.8 \pm 0.3$                                 | $931.0 \pm 44.5$   |
|        |                       | 40-50       | $86.3 \pm 1.7$               | $55.7\pm0.8$                             | $73.1 \pm 0.3$                          | $0.71\pm0.00$   | $38.6\pm0.8$                                                    | $46.9 \pm 0.2$                                 | $588.6 \pm 27.8$   |
|        |                       | 50-60       | $53.6 \pm 1.2$               | $40.7\pm0.8$                             | $58.7\pm0.3$                            | $0.63\pm0.00$   | $26.3\pm0.8$                                                    | $34.9\pm0.2$                                   | $346.9 \pm 26.1$   |
|        |                       | 60–70       | $30.0\pm0.8$                 | $27.9\pm0.8$                             | $45.9\pm0.2$                            | $0.54\pm0.01$   | $16.2\pm0.8$                                                    | $25.5 \pm 0.1$                                 | $186.1 \pm 26.0$   |
|        |                       | ▶ 70–80     | $15.6\pm0.5$                 | $16.6 \pm 0.7$                           | $33.0\pm0.2$                            | $0.43\pm0.01$   | $7.7\pm0.7$                                                     | $17.0 \pm 0.1$                                 | $93.5 \pm 27.4$    |

| $\sqrt{s}$ (TeV) | dN/dy                            | $S_{\perp}$ (                                                 | $S_{\perp}$ (fm <sup>2</sup> )     |  |  |  |
|------------------|----------------------------------|---------------------------------------------------------------|------------------------------------|--|--|--|
| ( <i>pp</i> )    |                                  | $\alpha = 1$                                                  | $\alpha = 10$                      |  |  |  |
| 7                | → 82.1 ± 2.8                     | $7.43 \pm 0.48$                                               | $4.30 \pm 0.36$                    |  |  |  |
|                  | $70.2 \pm 2.2$<br>59.4 ± 1.7     | $7.43 \pm 0.41$<br>$7.43 \pm 0.35$                            | $4.30 \pm 0.31$<br>$4.30 \pm 0.27$ |  |  |  |
|                  | $48.8 \pm 1.3$                   | $7.43 \pm 0.30$<br>7 39 ± 0.02                                | $4.30 \pm 0.23$<br>$4.20 \pm 0.02$ |  |  |  |
|                  | $26.8 \pm 0.6$                   | $6.89 \pm 0.02$                                               | $4.20 \pm 0.02$<br>$3.80 \pm 0.03$ |  |  |  |
|                  | $18.2 \pm 0.4$<br>$10.8 \pm 0.2$ | $\begin{array}{c} 5.94 \pm 0.06 \\ 4.58 \pm 0.06 \end{array}$ | $3.16 \pm 0.04$<br>$2.29 \pm 0.04$ |  |  |  |



### pp vs. Pb-Pb @ LHC - hydro models

Pb-Pb, 5.02 TeV

 $dN_{\rm ch}/d\eta = 100$ 



 T = 200 MeV
 T = 155 MeV T = 100 MeV  $\tau_0$  [fm/c]  $\tau-\tau_0 \; [fm/c]$  T = 200 MeV
 T = 155 MeV
 T = 100 MeV 0 -x [fm] x [fm] x [fm] x [fm] T = 200 MeV
 T = 155 MeV T = 100 MeV  $r - \tau_0 \left[ fm/c \right]$ τ – τ<sub>0</sub> [fm/c] T = 200 MeV
 T = 155 MeV • T = 100 MeV y [fm] y [fm] y [fm] y [fm]

p-p, 5.02 TeV

 $dN_{\rm ch}/d\eta = 100$ 

p-p, 5.02 TeV

 $dN_{\rm ch}/d\eta = 20$ 

p-Pb, 5.02 TeV

 $dN_{\rm ch}/d\eta = 100$ 

U. Heinz et al., Journal of Physics: Conf. Series 1271(2019)012018