State-of-the-art input for simulation of nuclear processes at high energy: where heavy-ion and nuclear structure meets

Benjamin Bally

QCD challenges from pp to AA collisions Münster - 04/09/2024

- Use nuclear structure (NS) to build better inputs for the initial stage
	- \rightarrow Benefit from recent progress in ab initio NS

- Use nuclear structure (NS) to build better inputs for the initial stage
	- \rightarrow Benefit from recent progress in ab initio NS
- Heavy-ion collisions sensitive to spatial arrangement of nucleons inside the nucleus
	- ◇ Nuclear deformation Bally et al. , PRL 128, 082301 (2022); Ryssens et al. , PRL 130, 212302 (2023)
	- ◇ Neutron skin Giacalone et al. , PRL 131, 202302 (2023); STAR, Science Adv. 9, eabq3903 (2023)

- Use nuclear structure (NS) to build better inputs for the initial stage
	- \rightarrow Benefit from recent progress in ab initio NS
- Heavy-ion collisions sensitive to spatial arrangement of nucleons inside the nucleus
	- ◇ Nuclear deformation Bally et al. , PRL 128, 082301 (2022); Ryssens et al. , PRL 130, 212302 (2023)
	- \diamond **Neutron skin** Giacalone *et al.*, PRL 131, 202302 (2023); STAR, Science Adv. 9, eabq3903 (2023)
- Foster new experimental ideas at high energy
	- ◇ Study of collectivity in small systems Giacalone et al. , arXiv:2402.05995 (2024)
	- ◇ Exploit versatility of LHCb/SMOG2 Giacalone et al. , arXiv:2405.20210 (2024)

- Use nuclear structure (NS) to build better inputs for the initial stage
	- \rightarrow Benefit from recent progress in ab initio NS
- Heavy-ion collisions sensitive to spatial arrangement of nucleons inside the nucleus
	- ◇ Nuclear deformation Bally et al. , PRL 128, 082301 (2022); Ryssens et al. , PRL 130, 212302 (2023)
	- ◇ Neutron skin Giacalone et al. , PRL 131, 202302 (2023); STAR, Science Adv. 9, eabq3903 (2023)
- Foster new experimental ideas at high energy
	- ◇ Study of collectivity in small systems Giacalone et al. , arXiv:2402.05995 (2024)
	- ◇ Exploit versatility of LHCb/SMOG2 Giacalone et al. , arXiv:2405.20210 (2024)
- Potential new method to probe low-energy observables

Nuclear theory: hierarchy of scales

CR2

Courtesy of ORNL

● Nuclear matter made of quarks and gluons

Nuclear theory: hierarchy of scales

- Nuclear matter made of quarks and gluons
- But description from QCD:
	- ◇ Possible only for lightest nuclei (A ≤ 4)
	- ◇ Even if possible, would be very inefficient
	- ◇ What would we learn?

œz

Nuclear theory: hierarchy of scales

- Nuclear matter made of quarks and gluons
- But description from QCD:
	- ◇ Possible only for lightest nuclei (A ≤ 4)
	- \diamond Even if possible, would be very inefficient
	- ◇ What would we learn?
- Define appropriate degrees of freedom for the scale
- Connect different scales
	- \rightarrow Tower of Effective Field Theories

CØ2

Courtesy of J.-P. Ebran

Courtesy of J.-P. Ebran

- Fundamental principles:
	- 1. Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)

- Fundamental principles:
	- 1. Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
	- 2. Internucleon interaction rooted in QCD through Effective Field Theory (EFT)

- Fundamental principles:
	- 1. Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
	- 2. Internucleon interaction rooted in QCD through Effective Field Theory (EFT)
	- 3. Solve as exactly as possible the A-body Schrödinger equation: $H|\Psi\rangle = E|\Psi\rangle$

- Fundamental principles:
	- 1. Nuclei made of A interacting structureless nucleons $(Z$ protons, N neutrons)
	- 2. Internucleon interaction rooted in QCD through Effective Field Theory (EFT)
	- 3. Solve as exactly as possible the A-body Schrödinger equation: $H|\Psi\rangle = E|\Psi\rangle$

Courtesy of P. Arthuis

Effective field theory of the nuclear Hamiltonian

• Follow seminal work of Weinberg Weinberg et al., Phys. Lett. B 251, 288 (1990)

Effective field theory of the nuclear Hamiltonian

- Follow seminal work of Weinberg Weinberg et al., Phys. Lett. B 251, 288 (1990)
- Write the most general Lagragian compatible with symmetries of QCD
- Order terms by importance: $(Q/\Lambda)^n$ (power counting)

Effective field theory of the nuclear Hamiltonian

- Follow seminal work of Weinberg Weinberg et al., Phys. Lett. B 251, 288 (1990)
- Write the most general Lagragian compatible with symmetries of QCD
- Order terms by importance: $(Q/\Lambda)^n$ (power counting)

Epelbaum et al. , Front. Phys. 8, 98 (2020)

Ollitrault, PRD 46, 229 (1992) Ollitrault, EPJA 59, 236 (2023)

Nuclear deformation impacts overlap region

Intrinsic deformations

- Nuclear phenomenology often relies on the picture of intrinsic shapes
- Multipole expansion where small values of λ are the most important

Ring and Schuck, The Nuclear Many-Body Problem (1980)

Intrinsic deformations

- Nuclear phenomenology often relies on the picture of intrinsic shapes
- Multipole expansion where small values of λ are the most important
	- λ = 2 $\lambda = 3$ $\lambda = 4$ $a_{40} = 0$ $\lambda = 4$ a₄₀ < 0

Ring and Schuck, The Nuclear Many-Body Problem (1980)

- Warning: these shapes are not observables!
	- \rightarrow Convenient way to include many-body correlations in a one-body framework

• Woods-Saxon (WS) density profile

$$
\rho_{\text{ws}}(r,\theta,\phi) = \frac{\rho_0}{1 + \exp\left[\frac{1}{a}\left(r - R(\theta,\phi)\right)\right]}
$$

$$
R(\theta,\phi)=R_0\left\{1+\sum_{\lambda}\sum_{\mu=-\lambda}^{\lambda}a_{\lambda\mu}Y_{\lambda\mu}(\theta,\phi)\right\}
$$

• Woods-Saxon (WS) density profile

$$
\rho_{\text{ws}}(r,\theta,\phi) = \frac{\rho_0}{1 + \exp\left[\frac{1}{a}\left(r - R(\theta,\phi)\right)\right]}
$$

$$
R(\theta,\phi) = R_0 \left\{ 1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu} Y_{\lambda\mu}(\theta,\phi) \right\}
$$

- In HIC, people usually and incorrectly
	- ◇ assume a spherical WS

• Woods-Saxon (WS) density profile

$$
\rho_{\text{ws}}(r,\theta,\phi) = \frac{\rho_0}{1 + \exp\left[\frac{1}{a}\left(r - R(\theta,\phi)\right)\right]}
$$

$$
R(\theta,\phi) = R_0 \left\{ 1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu} Y_{\lambda\mu}(\theta,\phi) \right\}
$$

- In HIC, people usually and incorrectly
	- ◇ assume a spherical WS
	- \circ fit the WS parameters to the charge density/radius

• Woods-Saxon (WS) density profile

$$
\rho_{\text{ws}}(r,\theta,\phi) = \frac{\rho_0}{1 + \exp\left[\frac{1}{a}\left(r - R(\theta,\phi)\right)\right]}
$$

$$
R(\theta,\phi) = R_0 \left\{ 1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu} Y_{\lambda\mu}(\theta,\phi) \right\}
$$

- In HIC, people usually and incorrectly
	- ◇ assume a spherical WS
	- \circ fit the WS parameters to the charge density/radius
	- \circ consider only nucleon density (not proton and neutron densities)

Woods-Saxon (WS) density profile

$$
\rho_{\text{ws}}(r,\theta,\phi) = \frac{\rho_0}{1 + \exp\left[\frac{1}{a}\left(r - R(\theta,\phi)\right)\right]}
$$

with nuclear radius (surface deformation)

$$
R(\theta,\phi) = R_0 \left\{ 1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu} Y_{\lambda\mu}(\theta,\phi) \right\}
$$

- In HIC, people usually and incorrectly
	- ◇ assume a spherical WS
	- \circ fit the WS parameters to the charge density/radius
	- \circ consider only nucleon density (not proton and neutron densities)
	- \diamond take the WS parameters from NS calculations based on different definitions \rightarrow in general NS use **volume** deformations related to $\langle \Phi | r^\lambda Y_{\lambda \mu} | \Phi \rangle$

Ryssens et al. , PRL 130, 212302 (2023)

- A better, and still very simple, approach would be
	- \circ perform NS calculations to determine $\rho_{\text{mic,n}}(r, \theta, \phi)$ and $\rho_{\text{mic,p}}(r, \theta, \phi)$
	- \diamond fit ρ_{ws} to ρ_{mic} for protons and neutrons separately
	- \diamond sample nucleons using $\rho_{\text{ws},n}$ and $\rho_{\text{ws},p}$

- A better, and still very simple, approach would be
	- \circ perform NS calculations to determine $\rho_{\text{mic,n}}(r, \theta, \phi)$ and $\rho_{\text{mic,n}}(r, \theta, \phi)$
	- \diamond fit ρ_{ws} to ρ_{mic} for protons and neutrons separately
	- \circ sample nucleons using ρ_{ws} and ρ_{ws}
- Parameters from *phenomenological* calculations available for
	- ϕ 129 Xe \rightarrow Bally et al., PRL 128, 082301 (2022)
	- ◇ 197 Au \rightarrow Bally et al., EPJA 59, 58 (2023); Ryssens et al., PRL 130, 212302 (2023)
	- ◇ $^{208}Pb \rightarrow$ Bally et al., PRL 128, 082301 (2022)
	- ◇ $238 \cup \rightarrow$ Ryssens et al., PRL 130, 212302 (2023)

Only triaxiality explains LHC results

Remark: excellent agreement for neutron skin (although WS not perfect) $\Delta r_{np}[\text{STAR}] = 0.17 \pm 0.03 \text{ (stat.)} \pm 0.08 \text{ (syst.)} \text{ fm}$ STAR, Science Adv. 9, eabq390 (2023) Δr_{no} [MREDF] = 0.17 fm

 Δr_{nn} [WS fit] = 0.19 fm

- Collisions scheduled or already performed at LHC/RHIC
	- \circ ¹⁶O + ¹⁶O
	- \circ ²⁰⁸Pb + Ne

- Collisions scheduled or already performed at LHC/RHIC
	- \circ ¹⁶O + ¹⁶O
	- \circ ²⁰⁸Pb + Ne
- Collaboration of physicists from heavy ions and nuclear structure
- State-of-the-art calculations for
	- ϕ ¹⁶O + ¹⁶O and ²⁰Ne + ²⁰Ne Giacalone et al., arXiv:2402.05995 (2024)
	- \degree $^{208}Pb + ^{16}O$ and $^{208}Pb + ^{20}Ne$ Giacalone et al., arXiv:2405.20210 (2024)
- Collisions scheduled or already performed at LHC/RHIC
	- \circ ¹⁶O + ¹⁶O
	- \circ ²⁰⁸Pb + Ne
- Collaboration of physicists from heavy ions and nuclear structure
- State-of-the-art calculations for
	- ϕ ¹⁶O + ¹⁶O and ²⁰Ne + ²⁰Ne Giacalone et al., arXiv:2402.05995 (2024)
	- \degree $^{208}Pb + ^{16}O$ and $^{208}Pb + ^{20}Ne$ Giacalone et al., arXiv:2405.20210 (2024)
- New ideas related to
	- ◇ collectivity in small systems
	- ◇ physics program/opportunities at LHCb/SMOG2

Tools and workflow

- TAURUS: <https://github.com/project-taurus>
- Trajectum: <https://sites.google.com/view/govertnijs/trajectum>
- SMASH: <https://github.com/smash-transport/smash>

NLEFT calculations

Nuclear Lattice Effective field Theory (NLEFT) Lee, Front. in Phys. 8, 174 (2020) Lähde and Meißner, Lectures Notes in Phys., Springer (2019)

- Mesh with 8 sites and spacing $a = 1.315$ fm
- Minimal pionless EFT Hamiltonian with $SU(4)$ symmetry
- Pin-hole algorithm \rightarrow sample nucleon positions from A-body density (include all correlations)

Elhatisari et al. , PRL 119, 222505 (2017)

PGCM calculations

- Projected Generator Coordinate Method (PGCM) Hill and Wheeler, Phys. Rev. 89, 1102 (1953); Griffin and Wheeler, Phys. Rev. 108, 311 (1957) Bally et al. , EPJA 60, 62 (2024)
- Approximate wave function of the form: $|\Psi\rangle = \sum_q f(q)|\Phi(q)\rangle$ $q \equiv$ collective degrees of freedom
- \bullet Variational principle: $\delta \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \Leftrightarrow \text{diag} \left[\text{span} (\{ |\Phi(q) \rangle \} \right) \right]$

PGCM calculations

- Projected Generator Coordinate Method (PGCM) Hill and Wheeler, Phys. Rev. 89, 1102 (1953); Griffin and Wheeler, Phys. Rev. 108, 311 (1957) Bally et al. , EPJA 60, 62 (2024)
- Approximate wave function of the form: $|\Psi\rangle = \sum_q f(q)|\Phi(q)\rangle$ $q \equiv$ collective degrees of freedom
- \bullet Variational principle: $\delta \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \Leftrightarrow \text{diag} \left[\text{span} (\{ |\Phi(q) \rangle \} \right) \right]$
- Not as exact, but very efficient at capturing collective correlations (e.g. deformation)

PGCM calculations

- Projected Generator Coordinate Method (PGCM) Hill and Wheeler, Phys. Rev. 89, 1102 (1953); Griffin and Wheeler, Phys. Rev. 108, 311 (1957) Bally et al. , EPJA 60, 62 (2024)
- Approximate wave function of the form: $|\Psi\rangle = \sum_q f(q)|\Phi(q)\rangle$ $q \equiv$ collective degrees of freedom
- \bullet Variational principle: $\delta \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \Leftrightarrow \text{diag} \left[\text{span} (\{ |\Phi(q) \rangle \} \right) \right]$
- Not as exact, but very efficient at capturing collective correlations (e.g. deformation)
- Large-scale computations using numerical suite TAURUS on Topaze supercomputer (CEA/CCRT)

$$
\begin{array}{c}\n(\overline{\bigcirc}) \\
\langle 0, 0 \rangle \\
(\overline{\bigcirc})\n\end{array}
$$
\nTAURUS

PGCM-based one-body densities

- Determine average deformation of PGCM ground state: \bar{q}
- One-body density: $\rho_m(x, y, z) = \sum_{st} \frac{\langle \Phi(\bar{q}) | a_{xyzst}^{\dagger} a_{xyzst}^{\dagger} P^Z P^N | \Phi(\bar{q}) \rangle}{\langle \Phi(\bar{q}) | P^Z P^N | \Phi(\bar{q}) \rangle}$ $\langle \Phi(\bar{q})|P^Z P^N|\Phi(\bar{q})\rangle$
- Sample ρ_m

- Impact of 20 Ne and 16 O structure
- NLEFT and PGCM in good agreement

cea

œz

Experimental landscape at CERN

Presentation by Maciej Slupecki (CERN), Beijing, 2024

 \Rightarrow All these nuclei are within the reach of ab initio nuclear structure

Bally et al. , EPJA 60, 62 (2024)

- Ground state exhibits large intrinsic triaxial deformation
- Excellent description using χ EFT Hamiltonian

- Ab initio nuclear structure can provide microscopic inputs for the initial stage
	- ⇒ From low-energy approximation of QCD to hot dense QCD matter

- Ab initio nuclear structure can provide microscopic inputs for the initial stage ⇒ From low-energy approximation of QCD to hot dense QCD matter
- Collaboration between low- and high-energy communities has a lot of potential
	- ◇ Better analyze and interpret high-energy data collected at LHC or EIC
	- ◇ Exploit structure of colliding species in high-energy experiment
	- ◇ Access to properties of atomic nuclei difficult to observe at low energy

- Ab initio nuclear structure can provide microscopic inputs for the initial stage ⇒ From low-energy approximation of QCD to hot dense QCD matter
- Collaboration between low- and high-energy communities has a lot of potential
	- ◇ Better analyze and interpret high-energy data collected at LHC or EIC
	- ◇ Exploit structure of colliding species in high-energy experiment
	- ◇ Access to properties of atomic nuclei difficult to observe at low energy

Fully exploit the versatility of LHCb/SMOG2