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Part I

Introduction
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Photon-induced interactions @ the LHC

b > R1 +R2

R1
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γ

s

b− s

kl→i

P2

Accelerated charged particles emit photons

Photoproduction usually studied in ep colliders
→ clean photoproduction environment

However, the LHC is an excellent source of photons
→ can reach extremely large Wγp

Energies available at the LHC:

pp @
√
s = 13 TeV → Wmax

γp ≈ 5 TeV → xmax
γ ≈ 0.14

pPb @
√
sNN = 8.16 TeV → Wmax

γp ≈ 1.5 TeV → xmax
γ ≈ 0.03

Energies available at ep colliders:

Wmax HERA
γp ≈ 240 GeV

Wmax EIC
γp ≈ 100 GeV

At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction

Done so far only for exclusive processes

We will show:
Inclusive quarkonium photoproduction can be measured via UPC at the LHC
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Exclusive vs. inclusive photoproduction at the LHC

Exclusive: fully determined final state

� Probe Generalised Parton Distributions

� Colourless exchange

� Experimentally clean: even @ LHC

� Smaller rates

� Initial state kinematics fully determined
by the final state

� Measured at the LHC

Inclusive: not fully determined final state

� Probe Parton Distribution Functions

� Colourful exchange

� Challenging: large backgrounds

� Larger rates

� Initial state kinematics partially
determined by the final state

� Can and should be measured at the LHC
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Quarkonium production status

Discovered 50 years ago quarkonia are bound states of heavy quarks

To date there is no theoretical mechanism that can describe all of the data

Different models make different assumptions of the hadronisation

Colour Evaporation model: 1 free parameter per meson
× fails to describe di-J/ψ data

Colour Singlet model: no free parameters
× tends to undershoot large pT data

Colour Octet mechanism (extension to CSM via non-relativistic QCD): free parameters
× cannot simultaneously describe the photoproduction and polarisation data

Maxim Nefedov, QaT 2023

More inclusive photoproduction data → possible at EIC in 10 years LHC today!
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Part II

Feasibility of inclusive quarkonium

photoproduction measurements at the LHC
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Photon-induced interactions via UPC @ the LHC

So far focus of UPCs @ LHC on exclusive processes (fully determined final state) [1–4]

Recently there were photoproduction studies with nuclear break up [5] (non-UPC [6∗])

Only published inclusive UPC study in PbPb: two-particle azimuthal correlations
ATLAS, PRC 104, 014903 (2021)

Coming soon: inclusive photonuclear dijets in PbPb [7]

[1] Exclusive dijet: CMS, PRL 131 (2023) 5, 051901

[2] Exclusive dilepton: ATLAS, PRC 104 (2021) 024906,
PLB 777 (2018) 303-323, PLB 749 (2015) 242-261;
CMS, JHEP 01 (2012) 052

[3] Light-by-light scattering: ATLAS, Nature Phys. 13 (9)
(2017) 852–858; CMS, PLB 797 (2019) 134826

[4] Exclusive quarkonium: ALICE, EPJC 79 (5) (2019)
402, PRL 113 (14) 232504; LHCb, JHEP 06 (2023)
146, JPG 40 (2013) 045001, JHEP 10 (2018) 167

[5] Diffractive quarkonium with nuclear break up: ALICE,
PRD 108 (2023) 11

[6] Peripheral∗ quarkonium photoproduction: ALICE,
PRL 116 (2016) 22, 222301, PLB 846 (2023) 137467;
LHCb, PRC 105 (2022) L032201

[7] Inclusive dijet: Not yet published:
ATLAS-CONF-2022-021, ATLAS-CONF-2017-011

[8] Inclusive quarkonium photoproduction:
NOT YET MEASURED AT THE LHC!
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Existing J/ψ photoproduction measurements from HERA

J/ψ

Pb

p

J/ψ

Pb

p

J/ψ

Pb

p

Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic
photoproduction @ HERA

√
s = 320 GeV

Different contributions separated using experimental cuts on pT and z =
Pp ·Pψ
Pp ·Pγ ...

diffractive region: pT < 1 GeV, z > 0.9; inclusive region: pT > 1 GeV, z < 0.9

HERA result: σHERA
exclusive ≃ σHERA

dissociative ≃ σHERA
inclusive

Expectation: σLHC
exclusive ≃ σLHC

dissociative ≃ σLHC
inclusive → only difference is photon flux!

Exclusive and proton-dissociative photoproduction have been measured @ LHC

Expect that inclusive yield is sufficently large we will demonstrate this

Measuring inclusive quarkonium photoproduction to
understand the quarkonium hadronisation

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 8 / 25
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Is it feasible to measure inclusive quarkonium
photoproduction at the LHC?

Anticipate sizeable photoproduction yield

Large hadronic background must be shown to be suppressed

Q Q

Proton-lead is the ideal collision system

Enhanced photon flux w.r.t. pp: ∝ Z 2

No ambiguity as to the photon emitter: reconstruction of z and Wγp

Less pileup than pp
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Part III

Methodology
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Building a Monte Carlo sample

We must:

1 Evaluate yield & PT reach: need reliable Monte Carlo (MC) sample

Problem:

Only LO MC for quarkonia + QCD corrections are large!

LO CS undershoots undershoots large PT data
LO CO same slope as data at large PT

0 2 4 6 8 10
PT [GeV]

10 5

10 4

10 3

10 2

10 1

100

101

d
/d

P T
 [n

b/
Ge

V]

ep  e  J/  X
sep = 320GeV

Q2 < 2.5 GeV2

0.3 < z < 0.9
< OJ/ (3S[1]

1 ) > = 1.45 GeV3, mc = 1.5 GeV
< OJ/ (1S[8]

0 ) > = 0.01 GeV3, mc = 1.6 GeV
CT18NLO

Before tune:
HO2.6.7: 3S[1]

1
HO2.6.7: 1S[8]

0
H1 data: NPB 472 (1996) 3-31,
EPJC 25 (2002) 41-53,
EPJC 68 (2010) 401-420
H1 data: b J/  subtracted

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 11 / 25



Building a Monte Carlo sample

We must:

1 Evaluate yield & PT reach: need reliable Monte Carlo (MC) sample

Problem:

Only LO MC for quarkonia + QCD corrections are large!

LO CS + PS improved but still undershoots at large PT

LO CO + PS large PT slope agreement is worse

0 2 4 6 8 10
PT [GeV]

10 5

10 4

10 3

10 2

10 1

100

101

d
/d

P T
 [n

b/
Ge

V]

ep  e  J/  X
sep = 320GeV

Q2 < 2.5 GeV2

0.3 < z < 0.9
< OJ/ (3S[1]

1 ) > = 1.45 GeV3, mc = 1.5 GeV
< OJ/ (1S[8]

0 ) > = 0.01 GeV3, mc = 1.6 GeV
CT18NLO

Before tune:
HO2.6.7: 3S[1]

1
HO2.6.7 + PYTHIA8.310: 3S[1]

1
HO2.6.7: 1S[8]

0
HO2.6.7 + PYTHIA8.310: 1S[8]

0  
H1 data: NPB 472 (1996) 3-31,
EPJC 25 (2002) 41-53,
EPJC 68 (2010) 401-420
H1 data: b J/  subtracted

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 11 / 25



Building a Monte Carlo sample

We must:

1 Evaluate yield & PT reach: need reliable Monte Carlo (MC) sample
Solution: perform tune in PT to HERA data + keep

√
s and y dependence from

photon flux and PDF
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HO2.6.7 + PYTHIA8.310 + tune: 3S[1]
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HO2.6.7: 1S[8]

0
HO2.6.7 + PYTHIA8.310 + tune: 1S[8]

0

2 Reject background: reliable background MC + background reduction strategy
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Background Monte Carlo: hadroproduction PT distribution

Just as for photoproduction we tune our background Monte Carlo to data

Compute tune factors using 5 TeV rapidity-integrated LHCb data under the same

assumptions:

1 Tuning is y independent
2 Tuning is

√
s independent

Validation 1: tune vs. y -diff. data @
5 TeV.

0 2 4 6 8 10 12 14
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10 2

10 1

100

101
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d
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 HO2.6.7 + PYTHIA8.310 + tune: 3S[1]
1

 HO2.6.7 + PYTHIA8.310 + tune: 3S[8]
1  

LHCb data JHEP 11 (2021) 181, 2021
2<y<2.5x 100

2.5<y<3.0x 101

3.0<y<3.5x 102

3.5<y<4.0x 103

4.0<y<4.5x 104

Validation 2: tune vs. 13- and 2.76 TeV
data.
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2.0 < yJ/ < 4.5

2.76 TeV LHCb data JHEP 02 (2013) 041, 2013
13 TeV LHCb data JHEP 10 (2015) 172, 2015
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assumptions:

1 Tuning is y independent

2 Tuning is
√
s independent
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5 TeV.
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Background-reduction techniques
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Hadroproduced J/ψ are associated with more
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Method I: Rapidity gap

A rapidity gap exploits differences in event topologies
Bulk of particle activity accompanying the J/ψ surrounds it and...

for photoproduced J/ψ skewed in the direction of the p
for hadroproduced J/ψ is symmetric in the direction of the Pb and p

10 0 10

dN
/d

 [A
U]

edge
Pb p

∆ηγ definition

∆ηγ = min(ηedgeγ − ηi ) ∀ i ̸= J/ψ in the detector acceptance
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Method I: Rapidity gaps in LHC detectors
General purpose detector [ATLAS, CMS]
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Narrow rapidity coverage:
LHCb 3 units, ALICE 1.8 units
less clean separation between
photoproduction and hadroproduction

Selecting a cut value that minimises that statistical uncertainty:
→ removes O(99.99%) (O(99.9%)) of background events → S/B ≳ O(1)
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Background-reduction techniques

Method II: forward activity with HeRSCheL at LHCb

forward scintillator sensitive to charged particle activity in the region 5 < |η| < 10

Photoproduction events identified with no HeRSCheL activity
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Selecting events based on activity in HeRSCheL

Differential yield w.r.t. the number of charged particles on the
γ-emitter side within 5 < η < 10 for photo- and hadroproduced J/ψ
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Necessary to perform a full detector simulation to include HeRSCheL
response
We anticipate a clear distinction between photo- and hadroproduced
events
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Background-reduction techniques

Method III: far-forward activity with zero-degree calorimeter at ALICE, ATLAS, & CMS

Detector close to the beam pipe (|η| ≳ 8) sensitive to neutral particles

UPCs identified as most peripheral events

Inclusive J/ψ as a function of centrality has been measured
ALICE: JHEP 11 (2015) 127, JHEP 02 (2021) 002

The 80–100% centrality class removes 94% of all J/ψ events

Selecting events with 0 neutrons in ZDC can further enhance signal purity

[We expect O(99.99%) of the signal with no neutron emission]

In PbPb collision system there is a non-negligible photoproduction cross
section with neutron emissions O(20%)
A 0 neutron constraint biases the collision impact parameter:
distentangling the photon emitter

CMS, Phys.Rev.Lett. 131 (2023) 26, 262301, PRC 93, 055206 (2016)
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Part IV

Results
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Photoproduction yields
General purpose detector [ATLAS, CMS]
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Using GPD:
isolate photoproduction using ∆ηγ and selecting the 80–100% centrality class
With Run3+4 lumi extend the PT reach from 10 GeV (HERA data)→ 20 GeV
Further enhance signal purity by selecting 0n events

Using LHCb:
isolate photoproduction using ∆ηγ
Further enhance signal purity using HeRSCheL

Expect ψ′ yield to be ∼ 1/20 of J/ψ yield no PT differential data from HERA!
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Using GPD:
isolate photoproduction using ∆ηγ and selecting the 80–100% centrality class
With Run3+4 lumi extend the PT reach from 10 GeV (HERA data)→ 20 GeV
Further enhance signal purity by selecting 0n events

Using LHCb:
isolate photoproduction using ∆ηγ
Further enhance signal purity using HeRSCheL

Expect ψ′ yield to be ∼ 1/20 of J/ψ yield no PT differential data from HERA!
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Part V

Kinematic reconstruction of Wγp and z
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Kinematic reconstruction: Wγp and z

We have shown that it is possible to measure PT -differential inclusive photoproduction
cross sections at the LHC without waiting for the EIC

What about dσ/dz and as a function of Wγp ?

Fully equivalent to ep measurements

Study quarkonium hadronisation
octet vs. singlet

Handle on resolved-photon contribution
direct and resolved photons

Kramer, hep-ph/016120

Let us reconstruct the photon kinematics from the final state :

Pb(PPb) + p(Pp)
γ(Pγ )→ Pb(P ′

Pb) + J/ψ(Pψ) + X (PX ) thus Pγ = Pψ + PX − Pp

Wγp ≃ (2 (Pψ + PX − Pp)︸ ︷︷ ︸
Pγ

·Pp)
1/2 & z =

Pp ·Pψ
Pp ·(Pψ+PX−Pp)

We only need to measure (Pψ · Pp) & (PX · Pp) or equivalently P−
X = EX − PX ,z

NB: In the exclusive case, PX ≃ P ′
p ⇒ Pγ + P ′

p = Pψ + P ′
p and Wγp ≃ Mψe

−yψ
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Kinematic reconstruction: ATLAS/CMS results
Limited detector coverage ⇒ P−

reconstructed < P−
generated

⇒ reconstruction bias:

zrec > zgen & W rec
γp <W gen

γp

This can be corrected for by determining the bias and spread of reconstructed
values as a function of the generated values
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The reconstruction is model independent (3S
[1]
1 /1S

[8]
0 )

Using a bin size based on the spread and statistics:

z reconstruction allows for O(5− 6) bins (similar to HERA)

Wγp reconstruction allows for O(7) bins
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Prospects for PDF extraction using UPC data
Scale uncertainty for J/ψ and Υ(1S) as a function of Wγp using CSM and scale fixing
procedure to cure perturbative instabilities that arise at Wγp ≫ mQ

The µR uncertainty is reduced at NLO wrt. LO

Expectation: µR uncertainty further reduced at NNLO → possibility to
constrain PDF

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]
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Scale uncertainty increases at large Wγp (=
√

sγp) (equivalently small x)

Recall Wmax LHC
γp is O(103 GeV)

Exp. data: H1, Nucl.Phys.B 459(1996)3-50; FTPS, Phys.Rev.Lett. 52(1984)795-798; NAI- NA14Collaboration, Z.Phys.C

33(1987)505 slide from Y. Yedelkina

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 24 / 25



Prospects for PDF extraction using UPC data
Scale uncertainty for J/ψ and Υ(1S) as a function of Wγp using CSM and scale fixing
procedure to cure perturbative instabilities that arise at Wγp ≫ mQ

The µR uncertainty is reduced at NLO wrt. LO

Expectation: µR uncertainty further reduced at NNLO → possibility to
constrain PDF

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

10
0

10
1

10
2

10
3

J/ψ photoproduction

CT18NLO

MJ/ψ=2mc=3 GeV, z < 0.9

µF=0.86MJ/ψ, µR ∈ [2.5; 10]GeV

20% FD (ψ ′→ J/ψ)

|RJ/ψ    (0)|
2
=1.25 GeV

3

σ
γp

 [
n

b
]

NLO: µR unc.

LO: µR unc.

NLO: CT18NLO PDF unc.

NLO: MSHT20 PDF unc.

NLO: NNPDF31 PDF unc.

Exp. data

-100

-50

 0

 50

 100

10
1

10
2

10
3

∆
σ

γp
 /

σ
γp

 [
%

 ]

√sγp [GeV]

10
-3

10
-2

10
-1

10
0

ϒ(1S) photoproduction

CT18NLO

Mϒ(1S)=2mb=9.5 GeV, z < 0.9

µF=0.86Mϒ(1S), µR ∈ [8; 32]GeV

2.22% FD (ϒ(3S)→ ϒ(1S))

12.51% FD (ϒ(2S)→ ϒ(1S))

|Rϒ(1S)       (0)|
2
=7.5 GeV

3

σ
γp

 [
n

b
]

NLO: µR unc.
LO: µR unc.

CT18NLO PDF unc.
MSHT20 PDF unc.

NNPDF31 PDF unc.

-40

-20

 0

 20

 40

10
2

10
3

∆
σ

γp
 /

σ
γp

 [
%

 ]

√sγp [GeV]

Scale uncertainty increases at large Wγp (=
√

sγp) (equivalently small x)

Recall Wmax LHC
γp is O(103 GeV)

Exp. data: H1, Nucl.Phys.B 459(1996)3-50; FTPS, Phys.Rev.Lett. 52(1984)795-798; NAI- NA14Collaboration, Z.Phys.C

33(1987)505 slide from Y. Yedelkina

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 24 / 25



Prospects for PDF extraction using UPC data
Scale uncertainty for J/ψ and Υ(1S) as a function of Wγp using CSM and scale fixing
procedure to cure perturbative instabilities that arise at Wγp ≫ mQ

The µR uncertainty is reduced at NLO wrt. LO

Expectation: µR uncertainty further reduced at NNLO → possibility to
constrain PDF

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

10
0

10
1

10
2

10
3

J/ψ photoproduction

CT18NLO

MJ/ψ=2mc=3 GeV, z < 0.9

µF=0.86MJ/ψ, µR ∈ [2.5; 10]GeV

20% FD (ψ ′→ J/ψ)

|RJ/ψ    (0)|
2
=1.25 GeV

3

σ
γp

 [
n

b
]

NLO: µR unc.

LO: µR unc.

NLO: CT18NLO PDF unc.

NLO: MSHT20 PDF unc.

NLO: NNPDF31 PDF unc.

Exp. data

-100

-50

 0

 50

 100

10
1

10
2

10
3

∆
σ

γp
 /

σ
γp

 [
%

 ]

√sγp [GeV]

10
-3

10
-2

10
-1

10
0

ϒ(1S) photoproduction

CT18NLO

Mϒ(1S)=2mb=9.5 GeV, z < 0.9

µF=0.86Mϒ(1S), µR ∈ [8; 32]GeV

2.22% FD (ϒ(3S)→ ϒ(1S))

12.51% FD (ϒ(2S)→ ϒ(1S))

|Rϒ(1S)       (0)|
2
=7.5 GeV

3

σ
γp

 [
n

b
]

NLO: µR unc.
LO: µR unc.

CT18NLO PDF unc.
MSHT20 PDF unc.

NNPDF31 PDF unc.

-40

-20

 0

 20

 40

10
2

10
3

∆
σ

γp
 /

σ
γp

 [
%

 ]

√sγp [GeV]

Scale uncertainty increases at large Wγp (=
√
sγp) (equivalently small x)

Recall Wmax LHC
γp is O(103 GeV)

Exp. data: H1, Nucl.Phys.B 459(1996)3-50; FTPS, Phys.Rev.Lett. 52(1984)795-798; NAI- NA14Collaboration, Z.Phys.C

33(1987)505 slide from Y. Yedelkina

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 24 / 25



Summary and outlook

A proton-lead collision system allows the LHC to be used as a
photon-nucleon collider

Feasible to measure inclusive J/ψ, ψ′ and Υ photoproduction at the LHC
Complementary to HERA measurements with a doubled PT reach
It can be done now O(10) years before the EIC

CMS and ATLAS are the most favourable experiments with the
largest PT reach and broadest pseudorapidity coverage

(CMS has additional advantage of measuring PT → 0 GeV)

Possible to make measurements at ALICE and LHCb too!

Despite the impossibility to measure the intact Pb ion which emitted
the photon, it is possible to reconstruct z and Wγp

Binning competitive with HERA, confirms the reach in Wγp up to 1 TeV !
Possibility to isolate resolved-photon contributions through a z
determination
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Backup
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Kinematic coverage of inclusive photoproduced J/ψ in
ATLAS acceptance
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Impact study: inclusion of exclusive J/ψ and Υ(1S) LHC
data on PDF uncertainty

Exclusive quarkomium production described with GPD, however in a kinematic
region the GPD can be modelled by a PDF via the Shuvaev Transform up to corrections ∼ O(x)

Largest PDF uncertainty at low scale and low x due to lack of data

Projection of inclusion of exclusive J/ψ and Υ(1S) LHC data in global analysis @
NLO accuracy shows a dramatic reduction in the low-x gluon PDF uncertainties

C. Flett, A. Martin, M. Ryskin, T. Teubner, arXiv:2408.01128
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ATLAS UPC dijet in Pb-Pb @
√
sNN = 5.02 TeV

ATLAS-CONF-2022-021

Triply differential cross section in,

zγ =
mjets√
sNN

e+yjets , xA =
mjets√
sNN

e−yjets , HT = pjet1
T + pjet2

T (1)

with jets defined using anti-kT with R = 0.4; p
jet1(2)
T > 15(20) GeV and |ηjet | < 4.4.

Selection requirements:
Intact photon emitter: 0nXn [EZDC < 1 TeV]

Photon exchange:
∑
γ ∆η > 2.5 [instead of ∆ηγ ]

Hadronic exchange: ∆ηA < 3

Slide from A. Angerami

∑
γ ∆η vs. ∆ηγ :

Reduced efficiency for removing
hadroproduced events
Increased efficiency for retaining the
resolved contribution

Dijets: no clear handle on the size of the
resolved photon contribution

Inclusive photoproduction: a
z-determination offers a handle on the size
of the resolved photon contribution
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Increased efficiency for retaining the
resolved contribution

Dijets: no clear handle on the size of the
resolved photon contribution

Inclusive photoproduction: a
z-determination offers a handle on the size
of the resolved photon contribution

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 29 / 25



ATLAS UPC dijet in Pb-Pb @
√
sNN = 5.02 TeV

ATLAS-CONF-2022-021

Triply differential cross section in,

zγ =
mjets√
sNN

e+yjets , xA =
mjets√
sNN

e−yjets , HT = pjet1
T + pjet2

T (1)

with jets defined using anti-kT with R = 0.4; p
jet1(2)
T > 15(20) GeV and |ηjet | < 4.4.

Selection requirements:
Intact photon emitter: 0nXn [EZDC < 1 TeV]

Photon exchange:
∑
γ ∆η > 2.5 [instead of ∆ηγ ]

Hadronic exchange: ∆ηA < 3

Slide from A. Angerami

∑
γ ∆η vs. ∆ηγ :

Reduced efficiency for removing
hadroproduced events
Increased efficiency for retaining the
resolved contribution

Dijets: no clear handle on the size of the
resolved photon contribution

Inclusive photoproduction: a
z-determination offers a handle on the size
of the resolved photon contribution

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 29 / 25



Leading order colour singlet prediction for rapidity
distribution of direct and resolved photoproduction

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
y

10 3

10 2

10 1

100

101

102

103

104

105

d
/d

y 
[n

b]

Pbp @ 8.16TeV 
Direct Photon
W<50 GeV
W>1000 GeV
Resolved Photon
W<50 GeV
W>1000 GeV

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC September 3, 2024 30 / 25



Neutron emission: disentangling the photon emitter

For exclusive vector meson production in PbPb collisions there is as ambiguity as
to which Pb ion is the photon emitter

At a given rapidity either:

(a) xγ =
mT J/ψ√

s
e+yJ/ψ , xP =

mT J/ψ√
s

e−yJ/ψ or (b) xγ =
mT J/ψ√

s
e−yJ/ψ , xP =

mT J/ψ√
s

e+yJ/ψ

ALICE, JHEP 10 (2023) 119;CMS, Phys.Rev.Lett. 131 (2023) 26, 262301 PRC 93, 055206 (2016)

Neutron emissions (detected with ZDCs) serve as an impact
parameter filter

Larger photon energies are associated with smaller impact
parameters

0nXn and XnXn select smaller impact parameter and larger
xγ compared to 0n0n
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From p to Pb in the HeRSCheL region

The background is modelled by generating pA events with HELAC-Onia and
passing them through PYTHIA; PYTHIA reads these as pp events.

In a pp collision Ncoll = 1; whereas in a pA collision there are many more nucleons
and therefore it is possible to have Ncoll > 1 [typically modelled using a Glauber model].

Using minimum bias events generated by PYTHIA, one can obtain a probability
distribution for the number of charged tracks in the HeRSCheL region. [bottom left]

To model the HeRSCheL signal using the PYTHIA events (i.e., converting pp to
pA) events are randomly assigned a centrality class and then assigned Ncoll based
on ALICE results. [bottom centre arXiv:1605.05680]

For a given event, the total number of charged tracks in the HeRSCheL region is
given by throwing i = 1, ..,Ncoll − 1 points into the probability distribution, and
summing over Ncoll.

The transformation from pp to pA HeRSCheL distribution. [bottom right]
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Predicted rates

CMS LHCb

|yJ/ψ| < 2.1 P
J/ψ
T

> 6.5 GeV for |yJ/ψ| < 1.2 2.0 < yJ/ψ < 4.5

P
J/ψ
T

> 6.5 GeV P
J/ψ
T

> 2 GeV for 1.2 < |yJ/ψ| < 1.6

P
J/ψ
T

> 0 GeV for 1.6 < |yJ/ψ| < 2.4
J/ψ
σ [nb] 4.8±0.9 630.0±1.1 880.0±210.0 (200.0±17.0)

Run 2 yields [×103] 0.87±0.16 110.0±0.2 11.0±2.7 (3.4±0.3)

Run 3+4 yields [×105] 0.048±0.009 6.3±0.011 1.8±0.43 (0.4±0.034)
ψ(2S)
σ [nb] 0.24±0.045 31.0±0.055 44.0±11.0 (9.9±0.85)
Run 2 yields 43.0±8.1 5600.0±9.9 550.0±130.0 (170.0±15.0)

Run3+4 yields [×102] 2.4±0.45 310.0±0.55 88.0±21.0 (20.0±1.7)

|yΥ| < 2.4 2.0 < yΥ < 4.5
Υ(1S)
σ [nb] 1.4 0.53 (0.054)
Run 2 yields 250.0 9.2 (0.67)
Run 3+4 yields 1400.0 110.0 (11.0)
Υ(2S)
σ [nb] 0.55 0.21 (0.021)
Run 2 yields 99 3.7 (0.27)
Run 3+4 yields 550 42.0 (4.3)
Υ(3S)
σ [nb] 0.4 0.16 (0.016)
Run 2 yields 74 2.8 (0.2)
Run 3+4 yields 410 32.0 (3.2)
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Pile-up and effect on methods I–III

Advantage of pPb over pp is the significantly reduced pile-up
µ < 0.1 ⇒ ✓
µ ∼ O(0.5) ⇒ reduced efficiency!
µ ≳ 1 ⇒ should reconsider the efficacy of methods I–III

Efficacy of methods I–III with pile-up:

Method I: rapidity gaps

Calorimeter based rapidity-gap definitions not possible
Only rapidity-gap definitions based on charged tracks possible
Reduced ∆η reach for ATLAS (and CMS) 10→ 5 units

Method II: HeRSCheL

Timing is insufficient

Method III: ZDC

Timing is insufficient

These comments also apply to exclusive UPCs and to some extent to
centrality determination
Riccardo Longo, Physics with high-luminosity p+A collisions at the LHC Workshop, CERN 2024
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Method I: Rapidity-gap distribution feature

Due to the skewed distribution of particle activity, there is a shift to
larger values of ∆ηγ for photoproduced J/ψ with larger y
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increasing yJ/ψ

shift to larger ∆ηγ

For hadroproduced J/ψ the ∆ηγ-distribution is yJ/ψ independent

Therefore, the greatest separation between photo- and

hadroproduced J/ψ is when y
J/ψ
max within the detector acceptance
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Method I: Rapidity gaps in ATLAS
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