

THE INITIAL STATE: OMNE INITIUM DIFFICILE EST.

Oscar Garcia-Montero

[GARCIA@PHYSIK.UNI-BIELEFELD.DE](mailto:garcia@physik.uni-bielefeld.de)

Fakultät für Physik Universität Bielefeld

Sept. 2024

Bundesministerium für Bildung und Forschung

Münster

COMPLEMENTARITY UNDERSTANDING QCD:

2

EW relatively well understood Fun QCD shenanigans not fully understood in (see *soft photon puzzle*)

of system size (complexity frontier)

Excellent setting to test QCD nonlinearities

Kinematics complex but some limits are simple

2

EW relatively well understood Fun QCD shenanigans not fully understood in (see *soft photon puzzle*)

of system size (complexity frontier)

Excellent setting to test QCD nonlinearities

Kinematics complex but some limits are simple

THE TENOUSLY THERMAL QGP

- Heavy-Ion Collisions create a -*very complicated* Isolated Quantum System which is Initially far away from any equilibrium Self-interacting
	- Expanding against the vacuum
- A system battling to thermalize against all odds.

WHAT CAN WE LEARN? FROM THE TENOUSLY THERMAL QGP

- Thermalisation $\begin{tabular}{l} \top\end{tabular}$ How can isolated QCD systems thermalise so fast? What drives the attractor?
- Transport coefficients QCD matter QCD Thermodynamics
- Small Systems: What makes a fluid, a fluid?

-
-

Every *endeavour* **we take on in HICs depends heavily on the initial assumptions of the energy and charge deposition of the models.**

From medium to small systems

Initial condition for hard probes

INITIAL CONDITIONS

As of today, I could compile a list of current, pressing avenues on the initial states

Initial condition: $\sqrt{s_{NN}}$ dependence and longitudinal structure

Better quantification of ICs for large systems

B,Q,S **Charge deposition and the search for the CP**

From medium to small systems Initial condition: $\sqrt{s_{NN}}$ dependence and longitudinal structure **Initial condition for hard probes Better quantification of ICs for large systems** *B,Q,S* **Charge deposition and the search for the CP**

INITIAL CONDITIONS

As of today, I could compile a list of current, pressing avenues on the initial states

From medium to small systems $\textbf{Initial condition: } \sqrt{s_{NN}}$ dependence and longitudinal structure *B,Q,S* **Charge deposition and the search for the CP Initial condition for hard probes Better quantification of ICs for large systems**

INITIAL CONDITIONS

As of today, I could compile a list of current, pressing avenues on the initial states

THE INITIAL STATE OF A HIC

What do we need?

```
0, hydro
```


IC is commonly taken to be up to the beginning of hydro evolution.

Then, the initial energy stress tensor, $T^{\mu\nu}_{0\text{ hvdro}}$, is needed.

THE INITIAL STATE OF A HIC

What do we need?

-
- 0, hydro

IC is commonly taken to be up to the beginning of hydro evolution.

Then, the initial energy stress tensor, $T^{\mu\nu}_{0\text{ hvdro}}$, is needed.

THE INITIAL STATE OF A HIC ... IN 3D.

What do we expect to have?

High density of gluons, string breaking, etc.

(1) Fireball energy deposition: C.o.M of collision favours midrapidity.

Nature of DoFs depends model-by-model

THE INITIAL STATE OF A HIC ... IN 3D.

What do we expect to have?

(1)

High density of gluons, string breaking, etc.

(1) Fireball energy deposition: C.o.M of collision favours midrapidity.

Nature of DoFs depends model-by-model

Quark scattering, baryon junction, hadrons?

-
-
-

THE INITIAL STATE OF A HIC ... IN 3D.

What do we expect to have?

- Nature of DoFs depends model-by-model
- (1) Fireball energy deposition: C.o.M of collision favours midrapidity.
	- High density of gluons, string breaking, etc.
	- - $\quad \bullet$ Quark scattering, baryon junction, hadrons?
	-

(2) Fragmentation region energy deposition: C.o.M of collision favours midrapidity.

(2) Fragmentation region charge deposition: Q,B and S (in fluctuations)

SO, WHERE ARE WE? WHAT IS THERE? AND… WHAT IS MISSING?

Methods: State of the ART DoFs/motivation behind the energy and charge deposition

Effective description Often parametrical

Large-X Geometrical Low-X

Collinear fact. Described by PDFs

Overoccupied Color fields

Methods: State of the ART

DoFs/motivation behind the energy and charge deposition

Effective description Often parametrical

Large-X Geometrical Low-X

Collinear fact. Described by PDFs Overoccupied Color fields

AMPT, EKRT TRENTO

Methods: State of the ART DoFs/motivation behind the energy and charge deposition

Effective description Often parametrical

Collinear fact. Described by PDFs

SATURATION MODELS

DEEPLY INELASTIC SCATTERING (DIS)

- Using QED probe to test QCD properties The extended and \bullet Second prod., DVCS, etc)
-

- Inclusive and exclusive channels (vector meson
- Great control over kinematics Great control over kinematics

SATURATION MODELS

 OCD evolution in Q^2 given by the DGLAP equation \bullet

 \overline{X}

SATURATION MODELS

 QCD evolution in Q^2 given by the DGLAP equation \bullet

QCD non-linear evolution in *x* given by the BK equation \bullet

SATURATION MODELS

 QCD evolution in Q^2 given by the DGLAP equation \bullet

QCD non-linear evolution in *x* given by the BK equation \bullet

SATURATION MODELS

Nuclear structure

Balance between gluon emission and recombination leads t saturation of the gluon density (black disk limit *N* ∼ 1)

Emergence of a *semi-hard* saturation scale *Qs* is created dynamically

- Gluon distributions saturate with $k_{\perp} < Q_S$ ($r > Q_S^{-1}$ in pos. space)
- A simplified, parametric form: With energy: $Q_S \sim x^{-\lambda}$ With system size $Q_S \sim A^{1/3}$

SATURATION MODELS

Soft Partons

Macroscopic Field

Macroscopic Field

GLUE THE COLOR GLASS CONDENSATE Q*s* **Soft Partons Hard Partons** Static Color Sources *A*(*x*) $J^{\mu}(x) = g \delta(x^{-}) \delta^{\mu +} \rho(x)$ $[D_\mu, F^{\mu\nu}] = J^\nu$ **Yang-Mills Equations** $A_p^{\mu}(x) = -g \delta^{\mu+} \delta(x^{-})$ 1 ∇^2_{\perp} *ρ*(*x*⊥)

GLUE THE COLOR GLASS CONDENSATE Q*s* **Soft Partons Hard Partons** Static Color Sources *A*(*x*) $J^{\mu}(x) = g \delta(x^{-}) \delta^{\mu +} \rho(x)$ $[D_\mu, F^{\mu\nu}] = J^\nu$ **Yang-Mills Equations** $A_p^{\mu}(x) = -g \delta^{\mu+} \delta(x^{-})$ 1 ∇^2_{\perp} *ρ*(*x*⊥) *αs* $xf_g(x, Q_S^2)$ *πR*² \sim 1

Macroscopic Field

Soft Partons

Macroscopic Field

 $W[x; \rho]$: gauge invariant probability distribution

Soft Partons

Macroscopic Field

 $W[x; \rho]$: gauge invariant probability distribution

 $\langle \rho^a(\mathbf{x}_\perp) \rho^b(\mathbf{y}_\perp) \rangle = g^2 \delta^{ab} \mu^2 \delta^{(2)}(\mathbf{x}_\perp - \mathbf{y}_\perp)$

McLerran-Venugopalan Model

SPECIAL CASE

SATURATION: IP-GLASMA LOW-X

LO approximation for the CGC evolution of a dense-dense system.

IP-Glasma

NOTE: EXTENSION TO 3d is not trivial

 1) Sample nucleon positions (e.g. MC-Glauber) 2) Sample color currents from those nucleons $(J_{A,B})$ 3) Solve Yang-Mills in the presence of both currents and conservation laws for currents.

4) Get energy-stress tensor, *Tμν*

27

Perturbative expansion on the sources allows simple kinematics, connection $x \leftrightarrow y$ straightforward

Complete LO case

$RAPIDITY RESOLUTION \leftrightarrow LONG. RESOLUTION$ LONGITUDINAL STRUCTURE

Every contribution of sources taken on account, solvable numerically, but connection $x \leftrightarrow y$ is very complex

 $q(\boldsymbol{p}, y)$

PERTURBATIVE CASE

SATURATION: 3D-IP-GLASMA LOW-X

LO approximation for the CGC evolution of a dense-dense system.

1) Sample nucleon positions (e.g. MC-Glauber)

[*PRC* 108 (2023) 6, 064910]

SATURATION: 3D-IP-GLASMA LOW-X

LO approximation for the CGC evolution of a dense-dense system.

 1) Sample nucleon positions (e.g. MC-Glauber) 2) Sample color currents from those nucleons $(J_{A,B})$ but now your nuclei have an extent in z (more accurate in x^\pm)

IP-Glasma 3+1D (v2)

4) Solve Yang-Mills in 3+1D

5) Get $T^{\mu\nu}$ and evolution

[*Phys.Rev.D* 103 (2021) 1, 014003] 30

CGC IN 3D: THE MCDIPPER

Framework for comparison of saturation model predictions and creation of IC for HE Heavy-Ion Collisions

Monte-Carlo Dipole Parallel Event GeneRator

 Perturbative realisation of the LO glasma graph + Baryon stopping by CGC 140 140 140

FROM MICRO TO MACRO
EDOM THE CAC EODMALISM

Low-*x* gluons dominate the midrapidity region

$$
\frac{dN_g}{d^2xd^2pdy} = \frac{g^2}{8\pi^5 C_F p^2} \int \frac{d^2q}{(2\pi)^2} \frac{d^2k}{(2\pi)^2} (2\pi)^2 \delta(p+q-p) \qquad \qquad \text{Now-x}
$$
\n
$$
\times \Phi_1(x_1, x, q) \Phi_2(x_2, x, k) \qquad \qquad \text{where}
$$
\n
$$
U \text{ GDEs} \qquad \to \Phi_i(x, i)
$$

$$
\frac{dN_{q_f}}{d^2 \mathbf{x} d^2 \mathbf{p} dy} = \frac{x_1 q_f^A(x_1, \mathbf{p}^2, \mathbf{x}) D_{\text{fun}}(x_2, \mathbf{x}, \mathbf{p})}{(2\pi)^2} + \frac{x_2 q_f^A(x_2, \mathbf{p}^2, \mathbf{x}) D_{\text{fun}}(x_1, \mathbf{x}, \mathbf{p})}{(2\pi)^2}.
$$

 \cdot 1 1. NII Systematically **Improvable e.g. by including NLO gg→** $q\bar{q}$ production through gluon fusion

At forward/backward rapidities, particle production dominated by baryon stopping

FROM THE CGC FORMALISM

 p_1, T_1, T_2 and tabulate (*η*, *T*₁, *T*₂) Compute energy and charges using single particle production formulas

 $n_1, T_1, T_2,$ Use Glauber sampling to produce events -fast- using (η, T_1, T_2) as an EbE input.

[GM, Schlichting, Elfner, PRC 109 (2024) 4, 044916]

IN 3D: THE MCDI CGC IN 3D: THE MCDIPPER
Monte-Carlo Dipole Parallel Event GeneRator

Framework for comparison of saturation model predictions and creation of IC for HE Heavy-Ion Collisions

Monte-Carlo Dipole Parallel Event GeneRator

HOW DOES IT WORK?

Model input: gluon unintegrated distribution function Model input: gluon unintegrated distribution functions: (uGDF) + (collinear) parton distribution functions (PDFs)

Gluon production: *k*⊥ factorization ∼ UGD²

Quark production hybrid formalism ~ PDF ⊗ UGD

$$
(B\tau)_0 = \sum_f B_f \int d^2 \mathbf{p} \left[\frac{dN_f}{d^2 \mathbf{x} d^2 \mathbf{p} d\mathbf{y}} - \frac{dN_f}{d^2 \mathbf{x} d^2 \mathbf{p}} \right]
$$

CHARGE DEPOSITION

Non-trivial interaction between x-dependence of gluon uGDs and quark PDFs gives tails in the charge deposition

Even at higher rapidities, non-zero baryon stopping is found!

 $(see PRC 108 (2023) 4, 4)$

CHARGE DEPOSITION

Midrapidity baryon charge deposition follows an exponential shift in the rapidity shift

Non-trivial interaction between x-dependence of gluon uGDs and quark PDFs gives tails in the charge deposition

$$
\frac{\text{dB}}{\text{d}\eta}\Big|_{\eta=0} \sim e^{-\alpha_B y_{\text{beam}}} \quad \text{with} \quad y_{\text{beam}} \approx \frac{1}{2} \log \left[\frac{\sqrt{s_{\text{NN}}}}{m_N}\right]
$$

Even at higher rapidities, non-zero baryon stopping is found!

THE MCDIPPER+CLVISC SOME INTERESTING RESULTS (... TO ME)

[GM, Schlichting, Zhu, *in preparation]*

Minimal IC tuning. Added hotspot fluctuations

THE MCDIPPER+CLVISC Some interesting results (…to me)

[GM, Schlichting, Zhu, *in preparation]*

Additional fluctuations needed to explain flow decorrelation. WIP: charge fluctuations in the valence sector (PDF sampling of valence charges)

Decorrelation due to non-trivial *x*-dependence of uGHs and PDFs

We should strive to use IC models in HICs that can model and describe simultaneously collisions for smaller systems (e+A, p+A).

Consistency is key.

ULTRA PERIPHERAL Collisions

AS A WAY TO TEST THE INITIAL STATE

-
-
-
-
-
-
-
-

UPC physics ∼ DIS physics (With extra steps)

WITH CAVEATS

UPC physics ∼ DIS physics (With extra steps)

$$
\sigma_x = \int \mathrm{d}k \, \frac{\mathrm{d}N_\gamma}{\mathrm{d}k} \sigma_x^\gamma(k)
$$

Produced photon is quasi-real, low virtuality

XS of any process is a convolution of the rate of production with the photonuclear nXS

Both incoming hadrons can be the photon source

 $d\sigma_{\rm PbPb}(y)$ *dy* $= N_{\gamma/\text{Pb}}(y, M) \sigma_{\gamma \text{Pb}}(y) + N_{\gamma/\text{Pb}}(-y, M) \sigma_{\gamma \text{Pb}}(-y)$

Possible quantum interference effects!

Vector meson Production Accessing Nuclear Spatial Information:

Incoherent: Breaks up the nucleus.

 $e + A \rightarrow e + A + J/\psi$ $e + A \rightarrow e + (A' + X) + J/\psi$

Coherent: Sensitive to average geometry Diffractive peaks \rightarrow details of target, non-linearities, etc.

Vector meson Production Accessing Nuclear Spatial Information:

Incoherent: Breaks up the nucleus.

 $e + A \rightarrow e + A + J/\psi$ $e + A \rightarrow e + (A' + X) + J/\psi$

Coherent: Sensitive to average geometry Diffractive peaks \rightarrow details of target, non-linearities, etc.

Vector meson Production Accessing Nuclear Spatial Information:

Incoherent: Breaks up the nucleus.

 $e + A \rightarrow e + A + J/\psi$ $e + A \rightarrow e + (A' + X) + J/\psi$

Incoherent: Sensitive to EbE fluctuations Sensitive to nuclear structure

Coherent: Sensitive to average geometry Diffractive peaks \rightarrow details of target, non-linearities, etc.

Vector meson Production Accessing Nuclear Spatial Information:

Incoherent: Breaks up the nucleus.

 $e + A \rightarrow e + A + J/\psi$ $e + A \rightarrow e + (A' + X) + J/\psi$

Incoherent: Sensitive to EbE fluctuations Sensitive to nuclear structure

> *Ab initio* computations of nuclear densities can help include **nucleonic** *n-point* correlations into initial geometry

47 **[PRL 131 (2023) 6, 062301]**

Coherent: Sensitive to average geometry Diffractive peaks \rightarrow details of target, non-linearities, etc.

Vector meson Production Accessing Nuclear Spatial Information:

Coherent: Fully diffractive $e + A \rightarrow e + A + J/\psi$ $e + A \rightarrow e + (A' + X) + J/\psi$

Incoherent: Breaks up the nucleus.

Incoherent: Sensitive to EbE fluctuations Sensitive to nuclear structure

> *Ab initio* computations of nuclear densities can help include **nucleonic** *n-point* correlations into initial geometry

Flanking from both LHC and EIC?

Nuclear structure and flow

Anisotropy in UPCs EMERGING COLLECTIVITY

Non vanishing 2-particle correlations after non-flow subtraction in Pb+Pb collisions at 5.02 TeV

 \mathcal{S}^{α} 0.2

 0.15

 0.1

 0.05

- More realistic of the computation centered on 2-gluon production formula, [JHEP, 2022, 77 (2022).]
- photon as a ρ-meson

Correlations seem to be described well by CGC via dipole-dipole correlations (Corr. of four Wilson Lines)

 \bullet Alternative explanation lies in the creation of a small droplet of QGP taking the cuasivirtual

How are quarks and gluons, and their spins, **distributed in space and momentum** inside the nucleon?

> How do **color charges**, (and colorless jets) interact with a **nuclear medium?**

A

CORE IDEAS OF THE EIC

How are quarks and gluons, and their spins, **distributed in space and momentum** inside the nucleon?

> How do **color charges**, (and colorless jets) interact with a **nuclear medium?**

QUESTIONS FOR UPCS

- $\displaystyle {\rm Initial \,\, condition:} \, \sqrt{s_{\scriptscriptstyle NN}} \,\, dependence}$ **and longitudinal structure**
- *B,Q,S* **Charge deposition and the search for the CP**
- **From medium to small systems**
- **Better quantification of ICs for large systems**
- **Initial condition for hard probes**

How are quarks and gluons, and their spins, **distributed in space and momentum** inside the nucleon?

> How do **color charges**, (and colorless jets) interact with a **nuclear medium?**

QUESTIONS FOR UPCS

SYNERGIES HICS-UPCS

CHALLENGES IN ICS-HICS

- $\displaystyle {\rm Initial \,\, condition:} \, \sqrt{s_{\scriptscriptstyle NN}} \,\, dependence}$ **and longitudinal structure**
- *B,Q,S* **Charge deposition and the search for the CP**
- **From medium to small systems**
- **Better quantification of ICs for large systems**
- **Initial condition for hard probes**

Does gluon density **saturate at high

nergies in nuclei**? Is this a universal **energies in nuclei**? Is this a universal property in all nuclei, even the **proton**?

How are quarks and gluons, and their spins, **distributed in space and momentum** inside the nucleon?

> How do **color charges**, (and colorless jets) interact with a **nuclear medium?**

A

QUESTIONS FOR UPCS

SYNERGIES HICS-UPCS

CHALLENGES IN ICS-HICS

- $\displaystyle {\rm Initial \,\, condition:} \, \sqrt{s_{\scriptscriptstyle NN}} \,\, dependence}$ **and longitudinal structure**
- *B,Q,S* **Charge deposition and the search for the CP**
- **From medium to small systems**
- **Better quantification of ICs for large systems**
- **Initial condition for hard probes**

Does gluon density **saturate at high

nergies in nuclei**? Is this a universal **energies in nuclei**? Is this a universal property in all nuclei, even the **proton**?

How are quarks and gluons, and their spins, **distributed in space and momentum** inside the nucleon?

A

SYNERGIES HICS-UPCS

CHALLENGES IN ICS-HICS

QUESTIONS FOR UPCS

- $\displaystyle {\rm Initial \,\, condition:} \, \sqrt{s_{\scriptscriptstyle NN}} \,\, dependence}$ **and longitudinal structure**
- *B,Q,S* **Charge deposition and the search for the CP**
- **From medium to small systems**
- **Better quantification of ICs for large systems**
- **Initial condition for hard probes**

Does gluon density **saturate at high

nergies in nuclei**? Is this a universal **energies in nuclei**? Is this a universal property in all nuclei, even the **proton**?

How are quarks and gluons, and their spins, **distributed in space and momentum** inside the nucleon?

> How do **color charges**, (and colorless jets) interact with a **nuclear medium?**

B

A

SYNERGIES HICS-UPCS

CHALLENGES IN ICS-HICS CHALLENGES IN ICS-HICS

SUMMARY AND CONCLUSIONS

3D is now. Understanding the longitudinal structure of the initial energy deposition is **a** *necessity for the studies on small systems*

Many models. We need also a way to discriminate models of the initial stages.

Exciting Future: The EIC and UPCs pose as excellent complements to the HICs program. The ICs can be refined using its measurements.

Necessary: Models should establish themselves *conceptually* (if not computationally) consistent throughout wide range of energies and systems.

THE LONGITUDINAL STRUCTURE LET'S TAKE A LOOK FIRST AT

SMALL SYSTEMS Closer look: Long. Structure of

The theoretical assumptions measured small system flow coeffincients are not consistent with

Boost invariance is…

Boost invariance is… NOT A GOOD APPROXIMATION*

*And this is the *most averaged*, coarse-grained observable we can measure!

Boost invariance is… Not a good approximation

Needed: A first-principles inspired framework to compute

*And this is the *most* α

 $20₊$

 $\overline{4}$

BARYON LONG. CORRS.

Needed: A first-principles inspired framework to compute

*And this is the *most* α

 $20₊$

 $\overline{4}$

RAPIDITY RESOLUTION large Baryon Densities

For this, models are not available along this change in $\sqrt{s_{NN}}$

ICs not well theoretically constrained around the intermediate energies

It is not fully understood which are the right initial degrees of freedom for these collisions

160

10

HOWEVER,

RAPIDITY RESOLUTION large Baryon Densities

Baryon stopping is also seen at larger energies, leading to zones of of high n_B

Rapidity is a finer-resolution probe of the critical regime than $\sqrt{s_{NN}}$ for the LHC Run3 upgrade

At higher energies (LHC) the midrapidity- $1/2$ s are much better constrained

> A robust extension to 3D may result in a smaller uncertainty in large- μ_B observables.

[Brewer *et. al.*, PRC 98, 061901 (2018)]

11
Baryon stopping is also seen at larger energies, leading to zones of of high n_B

Rapidity is a finer-resolution probe of the critical regime than $\sqrt{s_{NN}}$ for the LHC Run3 upgrade

Rapidity Resolution large Baryon Densities

A robust extension to 3D may result in a smaller uncertainty in large- μ_B observables.

[Brewer *et. al.*, PRC 98, 061901 (2018)]

At higher energies (LHC) the -**midrapidity**- ICs are much better constrained

We need a well controlled 3D initial energy, and charge (BQS) deposition to initialise -precision physics era- EbE simulations

CHARGE DEPOSITION

Midrapidity baryon charge deposition follows a power-law trend

$$
\left.\frac{\mathrm{dB}}{\mathrm{d}\eta}\right|_{\eta=0} \sim \left(\sqrt{s_{NN}}\right)^{\alpha}
$$

 $10⁵$ $30 - 40%$ $0 - 5%$ $5 - 10\%$ $40 - 50%$ $\cdot\cdot\cdot$ 60 - 70% $10 - 20\%$ $10⁴$ $20 - 30%$ $\mathcal{L}(\mathbf{F})$ $70 - 80%$ $10³$ Charge $B_{4\pi}$ $10²$ Baryon 10^1 Deposited $10^{\rm C}$ 10^{-} dB/d*η*[|] 10^{-2} *η*=0 10^{-3} $10²$ $10³$ $\sqrt{s_{NN}}$ (GeV)

Non-trivial interaction between x-dependence of gluon uGDs and quark PDFs gives tails in the charge deposition

Even at higher rapidities, non-zero baryon stopping is found!

CHARGE DEPOSITION

 $(dB/d\eta_{s})$

13

CHARGE DEPOSITION

Non-trivial interaction between x-dependence of gluon uGDs and quark PDFs gives tails in the charge deposition

Even at higher rapidities, non-zero baryon stopping is found!

[GM, Schlichting, Elfner, PRC 109 (2024) 4, 044916]

CHARGE DEPOSITION

Non-trivial interaction between x-dependence of gluon uGDs and quark PDFs gives tails in the charge deposition

Even at higher rapidities, non-zero baryon stopping is found!

 $(see PRC 108 (2023) 4, 4)$

TUNING FIXING THE K-FACTOR ⟨ d*N*ch $\frac{du}{dy}$ = 4 3 *N*ch *S* $C_{\infty}^{3/4}$ (4 π *η s*) 1/3 $\overline{ }$ *π*2 30 *ν*eff \int 1/3 Multiplicity can be then estimated using $K_g = 1.25$ *{GBW}* K_g $= 1.85$ ${IP-Sat}$ Overall normalisation of $(e_{g}\tau)_{0}$ treated as a free parameter, $K_{\!g}$, to account for perturbative corrections Tune K_g using E_{\perp} in pp min. bias collisions at $\sqrt{s_{NN}} = 5.02 \, \text{TeV}$ Input model parameters can be fixed by other experiments, Input model parameters can be **fixed by other experiments** e.g DIS (e+p) e.g. **DIS (e+p, e+A,…)**

[PRL. 123, 262301]

$$
\epsilon(\mathbf{x}, \eta) = \epsilon_{\text{fb}}(\mathbf{x}, \eta) + \epsilon_{\text{frag},+}(\mathbf{x}, \eta) + \epsilon_{\text{frag},-}(\mathbf{x}, \eta)
$$

*Plateau***-fitting of the fireball** $= 1.0$ \cdots $f = 1.5$ $-f = 2.5$

 $\overline{2}$

 -2

Central fireball is parametrized in rapidity

 $\varepsilon_{\text{fb}}(\vec{x}_{\perp},\eta_s) = N_{\text{fb}}~\sqrt{T_A(\vec{x}_{\perp})~T_B(\vec{x}_{\perp})}~f_{\text{fb}}(\eta_s-\eta_{s,\text{cm}}(x_{\perp})),$

3D-TRENTO GEOMETRICAL

Parametrical model of energy deposition of the HIC

Extension to 3D, TRENTo includes a central fireball and forward and backward fragmentation regions.

16

[PRC 102 (2020)]

 $\eta_S - \eta_{S, \text{cm}}$

6

[PRC 102 (2020)]

Fragmentation deposition is constrained by *limiting fragmentation*

$$
\varepsilon_{\mathrm{frag},X}(\vec{x}_\perp,\eta_s) = \frac{k_{\mathrm{T,min}}}{N_{\mathrm{frag}}}\; F_X(\vec{x}_\perp)\;f_{\mathrm{frag}}(e^{-\eta_{s,\mathrm{max}}\pm}
$$

GEOMETRICAL

$$
\epsilon(\mathbf{x}, \eta) = \epsilon_{\text{fb}}(\mathbf{x}, \eta) + \epsilon_{\text{frag},+}(\mathbf{x}, \eta) + \epsilon_{\text{frag},-}(\mathbf{x}, \eta)
$$

Central fireball is parametrized in rapidity

 $\varepsilon_{\text{fb}}(\vec{x}_{\perp},\eta_s) = N_{\text{fb}} \sqrt{T_A(\vec{x}_{\perp}) T_B(\vec{x}_{\perp})} f_{\text{fb}}(\eta_s - \eta_{s,\text{cm}}(x_{\perp})),$

3D-TRENTO

Parametrical model of energy deposition of the HIC

Extension to 3D, TRENTo includes a central fireball and forward and backward fragmentation regions.

 $\left\lfloor \eta_{s}\right\rfloor _{0}$

16

[PRC 102 (2020)]

 $\, \varepsilon \eta_s \, \bigr)$.

Fragmentation deposition is constrained by *limiting fragmentation*

$$
\varepsilon_{\mathrm{frag},X}(\vec{x}_\perp,\eta_s) = \frac{k_{\mathrm{T,min}}}{N_{\mathrm{frag}}}\; F_X(\vec{x}_\perp)\;f_{\mathrm{frag}}(e^{-\eta_{s,\mathrm{max}}\pm}
$$

GEOMETRICAL

$$
\epsilon(\mathbf{x}, \eta) = \epsilon_{\text{fb}}(\mathbf{x}, \eta) + \epsilon_{\text{frag},+}(\mathbf{x}, \eta) + \epsilon_{\text{frag},-}(\mathbf{x}, \eta)
$$

Extension to 3D, TRENTo includes a central fireball forward and backward fragmentation regions.

Central fireball is parametrized in rapidity

 $\varepsilon_{\text{fb}}(\vec{x}_{\perp},\eta_s) = N_{\text{fb}}~\sqrt{T_A(\vec{x}_{\perp})~T_B(\vec{x}_{\perp})}~f_{\text{fb}}(\eta_s-\eta_{s,\text{cm}}(x_{\perp}))$

3D-TRENTO

Parametrical model of energy deposition of the HIC

17

Useful for bayesian analysis No charge deposition.

Testing Saturation Models

Testing Saturation Models

Testing Saturation Models

Testing Saturation Models A Dipole Story

$$
\sigma_{T,L}^{\gamma^*A} = \sum_f \left[d^2 \mathbf{b} d^2 \mathbf{r} \mathrm{d}z \middle| \psi_{T,L}^{\gamma^* \to q\bar{q}}(\mathbf{r}, z, \mathcal{Q}^2) \right]^2 N(\mathbf{b}, \mathbf{r})
$$

Inclusive DIS cross-section:

Compare linear DGLAP and nonlinear BK effects in $F_{2,L}$

Can be expressed as a function of structure functions, e.g.

$$
e^{2}F_{2}(x, Q) = Q^{2} \left(\sigma_{T}^{y}\right)
$$

$$
e^{2}F_{L}(x, Q) = Q^{2} \sigma_{L}^{y*A}
$$

How? Expanding *N*(**b**, **r**, *x*) and matching

[*Phys.Rev.D* 105 (2022) 11, 114017] 46

F_i difference(%) (^{197}Au)

Hadron correlations

- The semi-inclusive channel $e + A \rightarrow h_1 + h_2 + e' + X$ is quite sensitive
- Multiple scatterings with the soft gluons within the target serve to broaden the back-to-back peak for outgoing particles
	- When the relative momentum $q_\perp \sim \mathcal{Q}_s$, interacting $q\bar{q}$ feels maximally the saturated glue.
- Also, photon-hadron/photon jet should be sensitive to **saturation effects**.
- Progress towards NLO: [Caucal et al, arXiv:2405.19404]

