xFitter Tutorial

Francesco Giuli

ATLAS SM workshop (Prague, Czech Republic) 14/09/2023

Motivation

- \succ No new physics found at the LHC so far \otimes
- Need for precise measurement of SM processes
- This means accurate higher order (HO) calculations...
- ... but also precise knowledge of
 Parton Distribution Functions (PDFs)
- Proton-proton collision at the LHC
- For simplicity, let's consider Deep Inelastic Scattering (DIS) process - just one incoming parton
- > pp and $p\bar{p}$ collisions will be considered in the exercises

Factorisation theorem

$$\sigma_{DIS}(x,Q^2) = \int_x^1 \frac{dz}{z} C_i(z,\alpha_s(Q^2)) f_i\left(\frac{x}{z},Q^2\right) = C_i \otimes f_i$$

Partonic cross sections:

- Process dependent
- High-scale (short-distance) objects
- Computable in perturbation theory (LO, NLO, NNLO, N³LO)

PDFs:

- Universal (process independent)
- Low-scale (long-distance) objects
- Non computable in perturbation theory
- Scale dependence perturbative (DGLAP)
- Once PDFs have been determined at a given scale, the DGLAP evolution equations can be used to evolve them to any other scale

$$\mu^2 \frac{\partial}{\partial \mu^2} f_i(\mu) = P_{ij} \otimes f_j(\mu)$$

$$P_{ij}(y) = \frac{\alpha_s(\mu)}{2\pi} P_{ij}^{(0)}(y) + \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 P_{ij}^{(1)}(y) + \dots$$

Splitting functions

How do we determine PDFs?

> Presently, the most accurate and reliable way is through **fits to data**

The xFitter Project

- The <u>xFitter</u> project (former HERAFitter) is a unique open-source QCD fit framework
- GitLab repository (open access)
- > This code allows users to:
 - extract PDFs from a large variety of data
 - assess the impact of new data on PDFs
 - check the consistency of experimental data
 - test different theoretical assumptions

- Several active developers between experimentalists and theorists
- More than <u>100 publications</u> obtained using xFitter since the beginning of the project
- List of recent analyses by the xFitter Developers' Team:

Phys.Rev.D 104 (2021) 5, 056019, arXiv:2105.11306	QCD analysis of pion fragmentation functions in the xFitter framework
Phys.Rev.D 102 (2020) 1, 014040,	Parton Distribution Functions of the Charged Pion Within The xFitter
arXiv:2002.02902	Framework

MORE IN PREPARATION!

xFitter in a nutshell

- Parametrise PDFs at the initial scale:
 - several functional forms available
 - define PDF parameters to be minimised
- Evolve PDFs to the scales of the fitted data points:
 - DGLAP evolution up to NNLO in QCD and NLO QED (QCDNUM, APFEL, MELA)
 - non-DGLAP evolutions (dipole, CCFM)
- Compute predictions for the data points:
 - several mass schemes available in DIS (ZM-VFNS, ACOT, FONLL, TR, FFNS)
 - predictions for hadron-collider data through fast interfaces (APPLgrid, FastNLO)
- > Comparison data-predictions via χ^2 :
 - Multiple definitions available
 - consistent treatment of the systematic uncertainties
- > Minimise the χ^2 w.r.t. the fitted parameters
 - using MINUIT or by Bayesian reweighting
- Useful drawing tools nice and colorful plots
- Last xFitter External meeting held in May at CERN

Results obtained with xFitter

7

 $\mu_{i}^{2} = m_{W}^{2}$

10-1

xFitter

More Actions:

\$

xFitter release 2.2.0

Sample data files: **x**Fitter LHC: ATLAS, CMS, LHCb Tevatron: CDF, D0 HERA: H1, ZEUS, Combined Wiki xFitter / Fixed Target: ... WikiPolicy **DownloadPage** RecentChanges User Supplied: ... FindPage HelpContents Releases of the xFitter QCD analysis package xFitter/DownloadPage Installation script for xFitter together with QCDNUM, APFEL, APPLGRID, LHAPDF @install-xFitter-2.0.1 Page Immutable Page New installation script from master branch @install-xfitter-master Info Data and theory files can be downloaded from gitlab gitlab data repository Attachments

GitLab

2.2.0 Future Freeze

https://www.xfitter.org/xFitter/xFitter/DownloadPage

Release 2.2.0 released! (major update of evolution and reaction interfaces)

Script to install xFitter and all its dependencies: install-xFitter

Talking about the new release...

- Significant changes in the internal structure
- Re-written interfaces to minimizers, PDF parameterisation, decomposition, evolution and theory reactions

Large changes in the user interface

- Data handling, format and chi2 calculation remain largely the same (but there are changes)
- Nicely summarized in this <u>talk</u> by S. Glazov
- Picture taken from Ivan Novikov's <u>talk</u>

xFitter usage in the HEP comunity

xFitter is the tool of choice for PDF/QCD analyses by the LHC Collaborations

> ATLAS:

> PDF fit from diverse ATLAS data at \sqrt{s} = 7, 8 and 13 TeV - EPJC 82 (2022) 5 438

Drell-Yan phenomenology:

- PDF impact of A_{FB} in NC Drell-Yan events <u>JHEP 10 (2019) 176</u>
- PDF sensitivity of the longitudinal Z-boson polarisation Phys.Lett.B 821 (2021) 136613
- PDF sensitivity to A_{FB} and A_W in Drell-Yan for Precision EW Measurements and New Physics Searches - <u>Nucl.Phys.B 968 (2021) 115444</u>
- Enhancing the LHC sensitivity to broad W'/Z' resonances of new gauge sectors -JHEP 02 (2022) 179, PLB 841 (2023) 137915
- > Important contribution in **several ongoing activities of the LHC EW WG**:
 - Correlations between different PDFs trough pseudo-data fits
 - > ATLAS/CMS/LHCb sin² θ_{eff}^{l} pseudo data and combination exercise
 - \succ Tevatron/ATLAS (and in future LHCb and CMS) m_W combination

> α_s extraction from Z boson transverse momentum distribution - <u>2203.05394</u>, <u>ATLAS-CONF-2023-015</u>

List of exercises

Exercise 1: PDF fit

learn the basic settings of a QCD analysis, based on HERA data only

- \succ **Exercise 2:** α_s extraction
 - > learn the basic of an α_s extraction using ATLAS Z p_T data
- Exercise 3: LHAPDF analysis
 - how to estimate impact of a new data without fitting
 - basis on profiling and reweighting techniques

Other useful/interesting exercise you might want to have a look at in backup:

- > Exercise 4: Including small-x resummation correction in a PDF fit
- Exercise 5: Adding your preferred PDF parametrization
- Exercise 6: Fit to final combined HERAI+II data and ATLAS W,Z data at 7 TeV
 - \succ strange-quark density: fixed vs free r_s
 - unsuppressed strange at low-x
- Exercise 7: Charged pion PDF
- Exercise 8: Charged pion Fragmentation Functions (FFs)
- Bonus: how to generate fixed-order predictions (key ingredient of a PDF fit)

- Each exercise in a separate directory: ~/xFitterTutorial/
 - > Exercise1
 - > Exercise2
 - > Exercise3
 - > Exercise4
 - ➢ Exercise5
 - > Exercise6
 - > Exercise7
 - Exercise8
- > You can find the xFitter manual and this tutorial in ~/xFitterTutorial/DOC
 - DOC/xFitter_Manual.pdf
 - > DOC/xFitter_Tutorial.pdf
- > All these exercises (with many more examples) can be found here
- Updated Wiki to help users, with also the list of existing JIRAs
- If you cannot find an answer to your question, create a new JIRA ticket, with issue type "Question"

Input files for a xFitter run

> Each time we run xFitter, we need to care about three configuration files:

- > parameters.yaml:
 - Minimisers MINUIT or CERES
 - Settings and commands for MINUIT
 - > Define parameters of the PDF parameterisation
 - Running mode: PDF fit or LHAPDF analysis
 - QCD order (NLO or NNLO)
 - Heavy flavor scheme (TR, ACOT, FONLL, etc.)

```
Minimizer: MINUIT # CERES
CERES:
offset: 2
tolerance: 1e-5
strategy: 0
covariance: 1
```

(CERES instructions since the tutorial uses MINUIT)

> steering.txt:

- List of data sets
- $\succ \chi^2$ settings

> constants.yaml:

> EW and SM input parameters e.g. couplings, quark masses etc.

General structure of the exercise

- > Each exercise has all the necessary inputs and datafiles for running xFitter
- > The results will be saved in the 'output' directory for further manipulation
- Before every exercise, in order to set up environmental variables, do
 \$> source ~/Software/setup.sh
- > To run xFitter, in the exercise folder type \$> xfitter
- > To draw graphical visualisation of the results: \$> xfitter-draw output
 - Many drawing options! Type \$> xfitter-draw --help to see all of them
- Post-fit and pre-fit manipulation of the LHAPDF files: \$> xfitter-process (needed for exercise3 in backup)
 - Many modules available! Type \$> xfitter-process --help to see all of them
 - profile to be used with Hessian PDF eigenvectors error sets
 - reweight to be used with NNPDF-style PDF sets (MC replicas)
 - scale90to68 scale PDF error bands from 90% CL to 68% CL
 - rotate obtain a PDF set which members are sorted according to their sensitivity to particular data
 - symmetrize produces symmetric bands out of hessian PDF set

EXERCISE 1

PDF fit

- Purpose: Learn the basic settings of a QCD analysis and reproduce the results of the HERAPDF2.0 fit
- > **Data set:** Final combined HERAI+II DIS data
- QCD order: NNLO

This data set is very important! **Backbone** of all modern PDF fits

> \$> cd ~/xFitterTutorial/exercise1

Final combined HERAI+II DIS data in steering.txt

```
&InFiles
```

- ! Number of intput files NInputFiles = 7
- ! Input files:

```
InputFileNames =
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_920-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_820-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_575-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_460-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_CCep-thexp.dat',
```

&End

FYI you can add as many data sets as you want! The fit will take longer have a look at this <u>example</u>

The structure of a xFitter datafile - DIS

```
&Data

Name = "HERA1+2 NCep 460"

IndexDataset = 106

Reaction = "NC e+-p"

TermName = 'R'

TermSource = 'use:hf_scheme_DISNC'

TermInfo = 'type=sigred:flav=incl:echarge=1:epolarity=0' ! in CInfo there was also "YSWIMEXP" = 1.0

TheorExpr = 'R'

NData = 210

NColumn = 176

ColumnType = 3*"Bin","Sigma", 172*"Error"

ColumnName = "Q2","x","y","Sigma", "stat", "uncor","sysHZComb1001","sysHZComb1002","sysHZComb1003","sysHZComb1004","sysHZComb1005",

Percent = 172*true

&End
```

- 'Name' provides the name of the data set
- > 'IndexDataset' is an internal index of the data set (provide unique numbers to get extra χ^2 info)
- 'Reaction' indicates the reaction type of the data set (used to trigger the corresponding theory calculation)
- > 'NData' specifies the number of data points in the file
- 'NColumn' is the number of columns in the data table
- > 'ColumnType' defines layout of the data table: Bin, Sigma, Error and Ignored
- 'ColumnName' defines names of the columns (e.g. x, Q² and y are required for DIS NC xsec)
 - If <u>ColumnType = Sigma</u>, it provides a label for the observable
 - If <u>ColumnType = Error</u>, the following names have special meaning: stat, uncor and total
 - Other names specify columns of correlated systematic uncertainties (e.g. each column of the correlated uncertainty must have unique name)
- > 'Percent' tells if an uncertainty is given in absolute (false) or in percent (true)

The structure of a xFitter datafile - LHC

Gitlab repository

- > 'TermName' gives names of terms used in the theory expression
- 'TermSource' might be:
 - \succ KFactor \rightarrow term which denotes an array of K-factors corresponding to the data bins
 - ➤ APPLgrid, FastNLO, ... → this term tells the parser to initialize the correct theory reaction for the cross section evaluation
 - ➤ VirtGrid → it can be used if the fit is performed using multidimensional measurements (here, each row denotes a single bin of the cross section and, the APPLGRID file location and number of bins in it)

# y1	y2	applgrid	n_grid_bins
0.0	0.3	theoryfiles/atlas/Jets2010-vg/R04/eta1.root	17
0.3	0.8	theoryfiles/atlas/Jets2010-vg/R04/eta2.root	17
0.8	1.2	theoryfiles/atlas/Jets2010-vg/R04/eta3.root	17
1.2	2.1	theoryfiles/atlas/Jets2010-vg/R04/eta4.root	16
2.1	2.8	theoryfiles/atlas/Jets2010-vg/R04/eta5.root	13

- 'TermInfo' gives paths from where the term numerical values should be taken
- 'TheorExpr' is the theory expression in simple algebraic form

The structure of a xFitter datafile - Plot

&PlotDesc

&End

- > 'PlotN' tells us the number of of distributions to be plotted
- > 'PlotDefColumn' is the variable name you want to plot
- > 'PlotDefValue' specifies the x-axis range of the variable you're plotting
- 'PlotOptions' are several plotting options to have some graphical improvement and labels on the standard xFitter plots in output

The PDF parametrisation is set in parameters.yaml

HERAPDF-like PDF parametrisation:

$$Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}) - A'x^{B'}(1-x)^{C'}$$

- Sum rules
- Asymptotic behaviour
- > To better model the high-x region

Just for the gluon PDF (C'_g = 25) to suppress negative contributions at high-x

> The starting values of the parameters are set in parameters.yaml

Parameters: : DEPENDENT Aq : [-0.061953, 0.27] Bq : [5.562367, 0.32] Cq : [0.166092, 0.01] # negative gluon Agp : [-0.383100, 0.01] Bgp : [25.0, 0.] # fix C of negative gluon Cgp : DEPENDENT Auv : [0.810476, 0.016] Buv Cuv : [4.823512, 0.06] : [9.921366, 0.8 Euv : DEPENDENT Adv Bdv : [1.029995, 0.06] Cdv : [4.846279, 0.3 CUbar: [7.059694, 0.8 DUbar: [1.548098, 1.0 ADbar: [0.26883, 0.01] BDbar: [-0.1273, 0.004] CDbar: # another example of providing value, step etc. value: 9.586246 step: 1.2345 #min #max #pr_mean #pr_sigma ZERO : [0.] # zero : [0.4, 0.0] fs : "=1-fs" fd AUbar: "=(1-fs)*ADbar"

The first number is the starting value, the second number the step size in the minimisation (if set to 0, the parameter is fixed)

You can also define parameters as a function of other parameters i.e. AUBar

Another possible way to provide values, step, etc.

> Settings for PDFs as output of the fit in steering.txt

```
&Output
```

! -- Q2 values at which the pdfs & errors are done (up to 20)
Q2VAL = 1.9, 3.0, 4.0, 5., 10., 100., 6464, 8317
! Q2VAL = 1.9, 4., 10., 100., 6464, 8317

```
! How many x points to write (standard = 101)
OUTNX = 101
```

```
! x-range of output (standard = 1E-4 1.0)
OUTXRANGE = 1E-4, 0.9999
```

```
! Write out LHAPDF5 output
! WriteLHAPDF5 = false
&End
```

Process dependent cuts in steering.txt

ProcessName(3) = 'CC e+-p' Variable(3) = '02' CutValueMin(3) = 3.5 CutValueMax(3) = 100000.0ProcessName(4) = 'CC e + - p'Variable(4) = 'x' CutValueMin(4) = 0.000001CutValueMax(4) = 1.0

---- СС ер

There's also a 'binFlag' in the datafiles:

 $0 \rightarrow$ bin not included in the fit

 $1 \rightarrow$ bin included in the fit

Should be identical to 'Name' in the datafile

Should be one of the variable name ('ColumName') in the datafile

> We want to perform a PDF fit...

So we will use the option 'DefaultEvolution: proton-QCDNUM' in parameters.yaml

```
DefaultEvolution: proton-QCDNUM

Evolutions:

proton-QCDNUM:

? !include evolutions/QCDNUM.yaml

decomposition: proton #this could be omitted, as the default decomposition is set
```

> The QCD perturbative order is set in parameters.yaml as well:

```
# QCD parameters
Order: NNLO
NFlavour: 5
isFFNS: 0
Q0 : 1.378404875209 # Initial scale =sqrt(1.9)
alphas : 0.118
```

Q₀ is the starting scale where we parametrize PDFs

```
? !include constants.yaml
```

> Here you can see other parameters as well i.e. number of flavours, Q_0 , α_s value etc. – this will overwrite what you have in constants.yaml (leaving everything else unchanged)

> The Heavy Flavour scheme is set in parameters.yaml

```
# Specify HF scheme used for DIS NC processes:
hf_scheme_DISNC :
  defaultValue : 'RT_DISNC'  # global specification
# defaultValue : 'BaseDISNC'  # global specification
# defaultValue : 'FONLL_DISNC'  # global specification
# defaultValue : 'FFABM_DISNC'
# 'HERA1+2 NCep 920' : 'BaseDISNC' # datafile specific (based on name)
# 1 : BaseDISNC
# 'HERA1+2 NCep 920' : 'Fractal_DISNC' # Fractal model. Add parameters file if you want to try it (see above)
# Specify HF scheme used for DIS CC processes:
hf_scheme_DISCC :
  defaultValue : 'BaseDISCC'
                                 # global specification
# defaultValue : 'FONLL_DISCC'  # global specification
                               # global specification
# defaultValue : 'FFABM_DISCC'
```

Several mass schemes available in DIS:

- > ZM-VFNS
- ACOT
- ► FONLL
- > TR
- ➢ FFNS

> To do a real fit with proper MINUIT minimisation:


```
Commands: |
call fcn 1
set str 2
call fcn 3
migrad
hesse
call fcn 3
```

> To run just 3 iterations:

```
MINUIT:
Commands: |
set str 2
call fcn 3
```

PDF errors – 3 options:

- Pumplin Eq. 43 of <u>hep-ph/0611148</u> (asymmetric)
- Hesse symmetric version of Pumplin
- None no error bands evaluation

Regulated by doErros: ###

To obtain datafiles: \$> ln -s ~/Software/xfitter-master/datafiles .

- To run xFitter: \$> xfitter
- To draw your results: \$> xfitter-draw output
- To see the full list of plotting options: \$> xfitter-draw --help

The output folder

- You can modify the folder name by changing OutputDirectory: "output"
- 'Status.out' tells us if the fit has converged (OK) or not (Failed)
- 'minuit.out.txt' contains the information about the MINUIT output of the fit
- > 'Results.txt' shows the global and partial χ^2 , as well as the pulls of each systematic uncertainty present in the fit
- 'parsout_0' contains the ouput fit parameters (and their associated errors) in MINUIT format
- 'fittedresults.txt' shows the comparison between data and fit predictions for each data point
- > The '**proton**' contains the output PDFs in LHAPDF format
 - You can modify the name in parameters.yaml

'pdfs_q2val_0*.txt' are .txt files with the PDF values at different Bjorken x ('01' represents the starting scale, and then you have one file for each scale defined in the steering card -> Q2VAL)

EXERCISE 2

α_s extraction from ATLAS Z p_T data

Exercise 2

- **Purpose:** Learn the basics of an α_s extraction
- **Data set:** Final combined HERAI+II DIS doing + KILAS 8 TeV Z p_T data (<u>ATLAS-</u> <u>CONF-2023-013</u>) – see backup for more details
- QCD order: N³LL + N³LO (through <u>DYTurbo</u> predictions)
- Strong coupling constant a_s is the least well known in nature
- Dominant uncertainties to precision
 measurements of Higgs coupling at LHC or EW precision observables at e⁺e⁻ colliders
- > Non-zero value of Z p_T arises from initial state radiations from incoming partons due to e meantum conservation $Z p_T$
- > The peak position of Z p_T and above is sensitive to $a_S(m_Z)$ $Z p_T$

- > \$> cd ~/xFitterTutorial/exercise2/
- We added the ATLAS 8 TeV Z p_T data on top of the final combined HERAI+II DIS data in steering.txt

'datafiles/lhc/atlas/zptfull8tev/zpt_y00_bwi.dat', 'datafiles/lhc/atlas/zptfull8tev/zpt_y01_bwi.dat', 'datafiles/lhc/atlas/zptfull8tev/zpt_y02_bwi.dat', 'datafiles/lhc/atlas/zptfull8tev/zpt_y03_bwi.dat', 'datafiles/lhc/atlas/zptfull8tev/zpt_y04_bwi.dat', 'datafiles/lhc/atlas/zptfull8tev/zpt_y05_bwi.dat', 'datafiles/lhc/atlas/zptfull8tev/zpt_y06_bwi.dat', 'datafiles/lhc/atlas/zptfull8tev/zpt_y07_bwi.dat',

- Additional datasets which have sensitivity to α_s (i.e. CDF Z p_T data) can be downloaded using the ./tool/xfitter_getdata.sh script
- Very easy to use! ./tool/xfitter_getdata.sh arXiv_number
- To see available data sets: ./tool/xfitter-getdata.sh --print

> Open e.g. ./datafiles/lhc/atlas/zptfull8tev/zpt_y00_bwi.dat

- ➢ Note the kind of reaction → 'NC pp' (Neutral Current production in pp collisions)
- 'TermSource = DYTurbo' thanks to a direct interface to xFitter
- > The first file is literally a DYTurbo input file
- Additional k_F to take into account e.g. ISR QED corrections or missing N³LO QCD contributions

&End

> We add the statistical correlation matrices in steering.txt

&InCorr

- ! Number of correlation (statistical, systematical or full) files NCorrFiles = 36
- ! Correlation files:

CorrFileNames(1) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y0.corr',</pre>
CorrFileNames(2) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y1.corr',</pre>
CorrFileNames(3) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y2.corr',</pre>
CorrFileNames(4) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y3.corr',</pre>
CorrFileNames(5) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y4.corr',</pre>
CorrFileNames(6) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y5.corr',</pre>
CorrFileNames(7) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y6.corr',</pre>
CorrFileNames(8) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y0_y7.corr',</pre>
CorrFileNames(9) =	<pre>'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y1_y1.corr',</pre>
CorrFileNames(10)	<pre>= 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y1_y2.corr',</pre>
CorrFileNames(11)	<pre>= 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y1_y3.corr',</pre>
CorrFileNames(12)	<pre>= 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y1_y4.corr',</pre>
CorrFileNames(13)	<pre>= 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y1_y5.corr',</pre>
CorrFileNames(14)	<pre>= 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y1_y6.corr',</pre>
CorrFileNames(15)	<pre>= 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y1_y7.corr',</pre>
CorrFileNames(16)	<pre>= 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y2_y2.corr',</pre>

CorrFileNames(17) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y2_y3.corr', CorrFileNames(18) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y2_y4.corr', CorrFileNames(19) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y2_y5.corr', CorrFileNames(20) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y2_y6.corr', CorrFileNames(21) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y2_y7.corr', CorrFileNames(22) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y3_y3.corr', CorrFileNames(23) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y3_y4.corr', CorrFileNames(24) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt v3 v5.corr' CorrFileNames(25) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y3_y6.corr', CorrFileNames(26) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y3_y7.corr', CorrFileNames(27) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt v4 v4.corr', CorrFileNames(28) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y4_y5.corr', CorrFileNames(29) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt y4 y6.corr', CorrFileNames(30) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y4_y7.corr', CorrFileNames(31) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y5_y5.corr', CorrFileNames(32) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt y5 y6.corr', CorrFileNames(33) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y5_y7.corr', CorrFileNames(34) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt y6 y6.corr', CorrFileNames(35) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt v6 v7.corr', CorrFileNames(36) = 'datafiles/lhc/atlas/zptfull8tev/corr/zpt_y7_y7.corr',

&StatCorr

NBins1 = 2

NBins2 = 3

&End

0

0

0

50

NIdColumns1 = 2 NIdColumns2 = 2

IdColumns1 = 'ptlow', 'pthigh'

IdColumns2 = 'mtt1','mtt2'

MatrixFormatIsTable = true

0

0

50

100

MatrixType = 'Statistical correlations'

400

480

0.2

0.4

480

580

-0.07

0.07

325

400

0.5

0.5

Name1 = 'ATLAS 1D ttbar vs ptavt 13 TeV' Name2 = 'ATLAS 1D ttbar vs mtt 13 TeV'

The general format of correlation matrices

- 'Name1, Name2' are the dataset name(s)
- > 'IdColumns' are the variables i.e. p_T , m_{\parallel} , etc.
- 'NBins' are the number of bins for each variables
- You need to specify the kind of correlation (i.e. you ca also have 'Full covariance matrix')
- The input format is very easy to understand!

32

> Let's also have a look at the DYTurbo part in parameters.yaml

DYTurbo:	
<pre>#? !include</pre>	reactions/DYTurbo.yaml
order: 3	# Perturbative order in QCD: 0 for LL, 1 for NLL+NLO, 2 for NNLL+NNLO, 3 for NNNLL+NNLO
muR: 1.	# Renormalization scale
muF: 1.	# Factorization scale
muRes: 1.	# Resummation scale
g1: 0.66	# Universal Gaussian non-perturbative form factor
g2: 0	# Q-dependent Gaussian non-perturbative form factor
g3: 0	# x-dependent Gaussian non-perturbative form factor
q: 0.1	# quartic term
debug: 0	

g₁, g₂ and g₃ regulates a <u>non-perturbative form factor</u> which affects the region of Z p₁ < 5 GeV</p>

- > q regulates the quartic term
- g₁ and q are free parameters of the fit! Constrained by data

DYTurbo/g1: [0.488881, 0.0434729] DYTurbo/q: [-0.187143, 0.0296958]

$$S_{\rm NP}(b) = \exp\left[-g_j(b) - g_K(b)\log\frac{m_{\ell\ell}^2}{Q_0^2}\right]$$

$$g_j(b) = \frac{g b^2}{\sqrt{1 + \lambda b^2}} + \operatorname{sign}(q) \left(1 - \exp\left[-|q| b^4\right]\right)$$

$$g_K(b) = g_0 \left(1 - \exp\left[-\frac{C_F \alpha_s(b_0/b_*)b^2}{\pi g_0 b_{\lim}^2} \right] \right)$$

- > We have to free the $\alpha_s(m_Z)$ parameter in parameters.yaml alphas: [0.117178, 0.000417857]
- > We want to do a real MINUIT minimisation fit, so:

MINUIT:

```
Commands: |
call fcn 1
set str 2
call fcn 3
migrad
hesse
call fcn 3
```

doErrors : Hesse # None

To obtain datafiles: \$> ln -s ~/Software/xfitter-master/datafiles .

- To run xFitter: \$> xfitter
- To draw your results: \$> xfitter-draw output_PDF_aS

Bonus: you can also run separate fits with fixed values of α_s (see next slide)
 In this way we can check the correlation between α_s and the gluon PDF

EPJ Plus (2019) 134, 531

As regards the PDF parametrisation, we adopt one with more flexibility at low x - see Exserice 5 in backup!

EXERCISE 3 LHAPDF analysis
Exercise 3

- Purpose: Learn how to include a new dataset into an existing PDF set, without redoing a PDF fit (profiling/reweighting) – <u>a very simple exercise which can be</u> <u>nicely put in a paper</u>
- > **Data set:** Tevatron W-boson charge asymmetry
- > QCD order: NLO
- > PDF sets from LHAPDF stored in ~/Software/deps/lhapdf/share/LHAPDF/
- > LHAPDF is a convenient library for the generic interpolation of PDFs as functions of x and Q^2
- > PDFs are saved in tables of PDF values at fixed points in x and Q^2 , and fast interpolation functions allow to access the PDFs at any other value
- > To download from PDF sets in LHAPDF format:
 - \$> cd ~/Software/deps/lhapdf/share/LHAPDF/
 - \$> lhapdf --pdfdir=./install HERAPDF20_NNL0_EIG (VAR)
 - \$> export LHAPATH='pwd'/:\$LHAPATH

- Settings for running a LHAPDF Analysis in parameters.yaml
- > We need to specify that we want to use LHAPDF evolution

DefaultEvolution: proton-QCDNUM

Evolutions: proton-QCDNUM: ? !include evolutions/QCDNUM.yaml decomposition: proton #this could be omi # The following allows QCDNUM to read PD EvolutionCopy: "proton-LHAPDF"	tted, as the default decomposition is set Fs from other evolutions:
proton-LHAPDF: class: LHAPDF set: "HERAPDF20_NNLO_EIG" member: 0	Here you specify the LHAPDF set you want to use

Profiling methodology

The inclusion of new data into an existing PDF set can be done with a Hessian profiling technique

> We define a χ^2 with theory uncertainties (β_{th} represent the PDF uncertainties)

$$\chi^{2}(\beta_{exp},\beta_{th}) = \chi^{2}_{exp} + \chi^{2}_{th}$$

$$= \sum_{i=1}^{N_{data}} \frac{(\sigma^{exp}_{i} + \sum_{j} \Gamma^{exp}_{ij} \beta_{j,exp} - \sigma^{th}_{i} - \sum_{k} \Gamma^{th}_{ik} \beta_{k,th})^{2}}{\Delta^{2}_{i}} + \sum_{j} \beta^{2}_{j,exp} + \sum_{k} \beta^{2}_{k,th}$$

- > Find the $\beta_{k,th}$ which minimised the χ^2 on the new data
- > The fit is done by solving a system of liner equations
- > Reinterpret the $\beta_{k,th}^2$ shifts as optimisation of the PDFs

Exercise 3 - settings

> \$> cd ~/xFitterTutorial/exercise3/

The Tevatron W asymmetry data sets and correlations files are set in steering.txt

```
&InFiles
   ! Number of intput files
        NInputFiles = 2
   ! Input files:
        InputFileNames =
        'datafiles/tevatron/cdf/wzProduction/0901.2169/CDF_W_asymmetry-thexp.dat',
        'datafiles/tevatron/d0/wzProduction/1312.2895/D0_W_asymmetry-thexp.dat',
   &End
```

```
&InCorr
! Number of correlation (statistical, systematical or full) files
NCorrFiles = 1
```

```
! Correlation files:
    CorrFileNames(1) = 'datafiles/tevatron/d0/wzProduction/1312.2895/D0_W_asymmetry.corr'
&End
```

We also include a correlation matrix to take statistical correlation into account (see Exercise 2 for more details)

Exercise 3 - settings

We follow the instructions described in the xFitter twiki

Profiler:					
Evolutions:					
proton-LHAPDF:					
<pre>sets: [HERAPDF20_NNL0_EIG, HERAPDF20_NNL0_VAR, HERAPDF20_NNL0_VAR]</pre>					
<pre>members: [,[0,1,10],[0,11,13]] # when omitted, default members is [0,1,end]</pre>					
error_type_override: [None,hessian,symmhessian] # treat parametrisation variations (members 11-13					
Status: "On"	# "Off" to turn off profiler				
WriteTheo: "Asymmetric"	# Can be "Off", "On" or "Asymmetric" (to store asymmetric variations)				
getChi2: "On"	# determine and report chi2 for each variation				

- Remember to set <u>enableExternalProfiler: "On"</u> (it creates of additional files, needed for xfitter-draw command)
- PDFs are taken from LHAPDF, so there is no need to specify a parametrisation in parameters.yaml file
- > We also enable the treatment of asymmetric PDF uncertainties with 'WriteTheo' and we get the χ^2 at every single iteration ('getChi2')

42

Exercise 3 – produce a new PDF set

To produce a new PDF set in LHAPDF format

\$> xfitter-process profile output/pdf_shifts.dat output/pdf_rotate.pdf
output/HERAPDF20nnlo/ HERAPDF20nnlo-TevatronW

- Save the new PDF set into our LHAPDF collection
- \$> mv HERAPDF20nnlo-TevatronW ~/Sofyware/deps/lhapdf/share/LHAPDF/
- Run a new LHAPDF analysis specifying the new PDF set in parameters.yaml file

Summary

- xFitter is open-source QCD fit framework! The program has many settings to address very different problems
- Big efforts have been made to keep the user interface accessible for simple and basic usage
- Release 2.2.0 <u>now out</u>! (major update of evolution and reaction interfaces)
 Modular and flexible! More examples in the '<u>examples</u>' folder
- ➤ The PDF world is amazing, fantastic and marvellous! ☺

WE WANT YOU!

We are nice people! You should really consider the possibility to join and work with us! ©

Backup Slides

> CMS:

- > Multi-differential $t\bar{t}$ cross sections at 13 TeV EPJC 80 (2020) 7 658
- > Extraction of PDFs, α_s and contact-interactions from new inclusive jet cross section measurement at 13 TeV <u>JHEP 02 (2022) 142</u> (more in this <u>talk</u>)
- W+charm analysis at 8 TeV <u>2112.00895</u>
- Strange quark PDF analysis with DIS HERA2 data, ATLAS W,Z cross-sections and ATLAS, CMS W+charm cross-sections - <u>PRD 104 (2021) 7 076004</u>
- NLO analysis of heavy-quark production cross-sections using different mass renormalisation schemes - <u>JHEP 04 (2021) 043</u>
- TMD parton densities and corresponding parton showers: the advantage of four- and five-flavour schemes - <u>2106.09791</u>
- Implementation of target mass corrections and higher-twist effects in the xFitter framework - <u>PRD 101 (2020) 7 074015</u>
- > NNLO PDFs with EW boson data from the LHC (nuclear PDFs) 2112.11904

Results obtained with xFitter: Examples (2)

Evolution of moder PDFs (benchmarking)

PDF4LHC report (benchmarking)

46

14/09/2023

 $\mathbf{Z} p_T$

Z p_T and rapidity at 8 TeV $ATLAS Preliminary \frac{m}{9}$ $PP \rightarrow Z$

ATLAS-CONF-2023-013

DYTurbo

- > Sub-percent pregision up to |y| < 3.6
- First comparison to N³LO QCD + NLO EW predictions (<u>DYTurbo</u> + <u>Reneficities</u>).6
- Allow precise PDF interpretations with QCD scale uncertainties smaller than PDF uncertainties

Good agreement with several highorder qT-resummed predictions

47

> Most precise experimental determination of $\alpha_S(m_Z)$

ATLAS-CONF-2023-015

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

 $\alpha_s(m_Z) = 0.11828^{+0.00084}_{-0.00088}$

ancesco.giuli@cern.ch

49

esults

EXERCISE 4

Including small-x resummation corrections

Exercise 4

- Purpose: Test the impact of small-x resummation corrections on PDFs
- > Data set: Final combined HERAI+II DIS data
- QCD order: NNLO (+ NLLx)
- Small-x resummation formalism based on k_T-factorization and BFKL
- Developed in the 90s-00s
- Recent developments: <u>1607.02153</u>, <u>1708.07510</u>⁵
 - Resummation matched to NNLO, allowing NNLO+NLLx phenomenology
 - Public code: <u>HELL</u>
 - Installed automatically with the provided install-xFitter script

Small-x logarithmic enhancement

$$\sigma_{DIS} = C_i \otimes f_i \qquad \qquad \mu^2 \frac{\partial}{\partial \mu^2} f_i(\mu) = P_{ij} \otimes f_j(\mu)$$

NLO
$$\frac{1}{x} \alpha_S \left[\# \log\left(\frac{1}{x}\right) + 1 \right]$$

NNLO $\frac{1}{x} \alpha_S^2 \left[\# \log^2\left(\frac{1}{x}\right) + \# \log\left(\frac{1}{x}\right) + 1 \right]$
NNLO $\frac{1}{x} \alpha_S^2 \left[\# \log^2\left(\frac{1}{x}\right) + \# \log\left(\frac{1}{x}\right) + 1 \right]$

If $\alpha_s \log\left(\frac{1}{x}\right) \sim 1 \rightarrow$ all such terms in the perturbative series are equally important Reorganisation of the expansion:

oldel lezoluludiol

$$\frac{1}{x} \left[1 + \# \alpha_S \log\left(\frac{1}{x}\right) + \# \alpha_S^2 \log^2\left(\frac{1}{x}\right) + \# \alpha_S^3 \log^3\left(\frac{1}{x}\right) + \dots \right] \quad \text{(LL)}$$

$$\frac{\alpha_S}{x} \left[1 + \# \alpha_S \log\left(\frac{1}{x}\right) + \# \alpha_S^2 \log^2\left(\frac{1}{x}\right) + \# \alpha_S^3 \log^3\left(\frac{1}{x}\right) + \dots \right] \quad \text{(NLL)}$$

Exercise 4 - settings

> \$> cd ~/xFitterTutorial/exercise4

Final combined HERAI+II DIS data in steering.txt

```
&InFiles
```

- ! Number of intput files NInputFiles = 7
- ! Input files:

```
InputFileNames =
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_920-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_820-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_575-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_460-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep-thexp.dat',
'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_CCep-thexp.dat',
```

&End

> Bonus: you can repeat this exercise with more data sets which are probing the low-x region \odot i.e. low mass or very forward DY, J/ψ or Y production etc.

Exercise 4 - settings

First, we change the program to evolve PDFs: from QCDNUM to APFEL

> Then:

- > We raise the charm matching scale $\mu_c = \kappa_c \cdot m_c$ (with $m_c = 1.43$ GeV), so it can be generated perturbatively Evolution and matching at NNLO + NLLx, $x = 10^{-4}$
- > We switch on the small-x resummation

```
DefaultEvolution: proton-APFELff
```

Evolutions:

proton-APFELff:

```
? !include evolutions/APFEL.yaml
```

decomposition: proton

kmc : 1.2 # ratio between charm quark threshold and mass
nllxResummation : "On"

> We change HF scheme

byReaction:

```
# FONLL scheme settings:
```

FONLL_DISNC:

? !include reactions/FONLL_DISNC.yaml

FONLL_DISCC:

? !include reactions/FONLL_DISCC.yaml

Specify HF scheme used for DIS NC processes:

hf_scheme_DISNC :

defaultValue : 'FONLL_DISNC' # global specification

Specify HF scheme used for DIS CC processes:

hf_scheme_DISCC :

defaultValue : 'FONLL_DISCC' # global specification

	NNLO	NNLO+NLLx
Total χ^2 /d.o.f	1388/1131	1316/1131

Gain in χ^2 of 72 units

Exercise 4 - results

- To obtain datafiles: \$> ln -s ~/Software/xfitter-master/datafiles
- To run xFitter: \$> xfitter
- To draw your results: \$> xfitter-draw output
- You need to compare these PDFs with HERAPDF2.0 NNLO

 $\sigma_{\rm red} = F_2 - \frac{y^2}{V} F_L$

EXERCISE 5

Add your preferred PDF parametrisation

- Purpose: Test alternative PDF parametrisation
- > Data set: Final combined HERAI+II DIS data
- > QCD order: NNLO (+ NLLx)
- > To model small-x region we proposed polynomial in $\log(x)$ $(1 + F \log(x) + G \log^2(x) + H \log^3(x) + \cdots)$

Considered both a multiplicative and an additive option, and we chose the latter:
EPJ Plus (2019) 134, 531

 $xf(x, \mu_0^2) = Ax^B(1-x)^C [1 + Dx + Ex^2 + F\log(x) + G\log^2(x) + H\log^3(x)]$

- Public code: <u>HELL</u>
- Installed automatically with the provided install-xFitter script
- ➤ FYI this is just one possible alternative parametrisation → many more to test! Bernstein or Chebyshev polynomials etc.

Exercise 5 - settings

> \$> cd ~/xFitterTutorial/exercise5

Final combined HERAI+II DIS data in steering.txt

```
&InFiles
```

- ! Number of intput files NInputFiles = 7
- ! Input files:

```
InputFileNames =
```

'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_920-thexp.dat', 'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_820-thexp.dat', 'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_575-thexp.dat', 'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCep_460-thexp.dat', 'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_NCem-thexp.dat', 'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_CCep-thexp.dat', 'datafiles/hera/h1zeusCombined/inclusiveDis/1506.06042/HERA1+2_CCep-thexp.dat',

&End

Exercise 5 - settings

- > We need to modify the parametrization in parameters.yaml
- > You can define as many parameters as you want
- > You provide your preferred parametrization here

```
Parameterisations:
  par_uv:
    class: Expression
    expression: "Auv*(x^Buv*(1-x)^Cuv)*(1+Euv*x^2+Fuv*ln(x)+Guv*ln(x)^2)"
  par_dv:
    class: Expression
    expression: "Adv*(x^Bdv*(1-x)^Cdv)"
  par_ubar:
    class: Expression
    expression: "Adbar*(x^Bdbar*(1-x)^Cubar)*(1+Dubar*x+Fdbar*ln(x))"
  par_dbar:
    class: Expression
    expression: "Adbar*(x^Bdbar*(1-x)^Cdbar)*(1+Ddbar*x+Fdbar*ln(x))"
  par_s:
    class: Expression
    expression: "Adbar*fs/(1-fs)*(x^Bdbar*(1-x)^Cdbar)*(1+Ddbar*x+Fdbar*ln(x))"
  par_g:
    class: Expression
    expression: Ag*(x^Bg*(1-x)^Cg)*(1+Fg*ln(x)+Gq*ln(x)^2)
```

> You can also switch on small-x resummation (see Exercise 4) to check if any improvement in χ^2

Parameters:

Ag	:	1	DEPI	END	ENT			
Bg	:	[-0	.50	09,	Ē.	0.0060]
Cg	:	[4	. 48	85,		0.1944]
Fg	:	[0	.21	56,		0.0005]
Gg	:	[0	.01	19,		0.0010]
Auv	:	1	DEPI	END	ENT			
Buv	:	[0	.73	92,		0.0021]
Cuv	:	[4	.58	45,		0.0170]
Euv	:	[2	.78	39,		0.0633]
Fuv	:	[0	.34	16,	k.	0.0027]
Guv	:	[0	.04	70,		0.0040]
Adv	:	1	DEPI	END	ENT			
Bdv	:	[0	.98	82,	0	0.0108]
Cdv	:	[4	. 69	83,	6	0.0742]
Cubar	:	[10	.96	07,	e i	0.2749]
Dubar	:	[17	.29	35,		0.2808]
Adbar	:	[0	.08	54,		0.0241]
Bdbar	:	[-0	. 33	54,	t	0.0031]
Cdbar	:	[23	.82	66,		0.9917]
Ddbar	:	[35	.03	68,	r	4.5302]
Fdbar	:	[0	.07	44,	1	0.0011]
ZERO	:	0						
fs :	[0	.4,	0.	0]	l		

Exercise 5 - results

- To obtain datafiles: \$> ln -s ~/Software/xfitter-master/datafiles .
- To run xFitter: \$> xfitter
- To draw your results: \$> xfitter-draw output
- You need to compare these PDFs with HERAPDF2.0 NNLO

EXERCISE 6 ATLASepWZ16: fixed vs free r_s

Exercise 6

- ▶ **Purpose:** Reproduce the ATLASepWZ16 fit results and χ^2 comparison for two different cases → fixed VS free r_s
- Data set: Final combined HERAI+II DIS data and ATLAS W,Z precise measurement at 7 TeV
- Below the datasets we need to add to the steering.txt file:

'datafiles/lhc/atlas/wzProduction/1612.03016/wminus-thexp.dat', 'datafiles/lhc/atlas/wzProduction/1612.03016/wplus-thexp.dat', 'datafiles/lhc/atlas/wzProduction/1612.03016/zyhigh_cc-thexp.dat', 'datafiles/lhc/atlas/wzProduction/1612.03016/zypeak_cc-thexp.dat', 'datafiles/lhc/atlas/wzProduction/1612.03016/zypeak_cc-thexp.dat',

- We also need to apply a cut on the minimum Q² of the data to enter the fit to be greater than 10 GeV – so we are not sensitive to non-perturbative effects i.e. higher-twist, small-x logarithmic enhancement, etc.
- > Do you remember how to do it?
 - ➤ Hint: look inside steering.txt ☺

Two different folders:

- \$> cd ~/xFitterTutorial/exercise6/rsFixed
- \$> cd ~/xFitterTutorial/exercise6/rsFree

$$r_{s} = \frac{f_{s}}{1 - f_{s}} \qquad f_{s} = \frac{r_{s}}{1 + r_{s}}$$

- \succ Then, we have to freeze/free r_s parameter in the parameters.yaml file
- > ATLASepWZ16 $\rightarrow r_s \sim 1.19 \text{ so } f_s \sim 0.54$ Parameters: rs : [1.1007, 0.1785]

Proposed range to scan: $0.91 < r_s < 1.21$

- > FYI in HERAI+II $\rightarrow f_s = 0.4$ (fixed) so $r_s \sim 0.667$
- To obtain datafiles: \$> ln -s ~/Software/xfitter-master/datafiles .
- To run xFitter: \$> xfitter
- To draw your results: \$> xfitter-draw rsFixed rsFree

64

Exercise 6 - Results

Francesco Giuli - francesco.gione con

10

10

Exercise 6 - bonus

- What happens if you start adding more and more ATLAS data?
- ATLASpdf21 is a PDF fit to multiple ATLAS data sets EPJC 82 (2022) 5, 438
 - Fit example + data files (to reproduce published results)
- > ATLAS r_s has come DOWN from ~1.2 to 0.8
- > MSHT, CT and NNPDF r_s have come UP from ~0.5 to 0.8 when including W,Z 7 TeV ATLAS data

EXERCISE 7 Charged pion PDF

67

Exercise 7

> Purpose: Extract the charged pion PDF (poorly studied experimentally)

> Charge symmetry $d = \bar{u}$ and SU(3)-symmetric sea $u = \bar{d} = s = \bar{s}$ at the initial scale $Q_0^2 = 1.9 \text{ GeV}^2$

$$\begin{aligned} v &:= (d - \overline{d}) - (u - \overline{u}), & xv(x) &= A_v x^{B_v} (1 - x)^{C_v} (1 + D_v x^{\frac{5}{2}}), \\ S &:= 2u + 2\overline{d} + s + \overline{s} = 6u, & xs(x) &= A_S x^{B_S} (1 - x)^{C_S}, \\ g &:= g, & xg(x) &= A_g x^{B_g} (1 - x)^{C_g}. \end{aligned}$$

 \succ The A_v and A_g parameters are determined by the sum rules:

$$\int_0^1 v(x) dx = 2, \qquad \qquad \int_0^1 x(v(x) + S(x) + g(x)) dx = 1$$

Exercise 7 - settings

> \$> cd ~/xFitterTutorial/exercise7

We need to add data from E615, NA10 and WA70 experiments in the steering.txt file 'datafiles/fixedTarget/NA10-286/thexp-0.data

InputFileNames =

'datafiles/fixedTarget/NA10/thexp-0.dat', 'datafiles/fixedTarget/NA10/thexp-1.dat', 'datafiles/fixedTarget/NA10/thexp-2.dat', 'datafiles/fixedTarget/NA10/thexp-3.dat', 'datafiles/fixedTarget/NA10/thexp-4.dat', 'datafiles/fixedTarget/NA10/thexp-5.dat', 'datafiles/fixedTarget/NA10/thexp-6.dat', 'datafiles/fixedTarget/NA10/thexp-7.dat', 'datafiles/fixedTarget/NA10/thexp-8.dat', 'datafiles/fixedTarget/WA70/thexp-0.dat', 'datafiles/fixedTarget/WA70/thexp-1.dat', 'datafiles/fixedTarget/WA70/thexp-2.dat', 'datafiles/fixedTarget/WA70/thexp-3.dat', 'datafiles/fixedTarget/WA70/thexp-4.dat', 'datafiles/fixedTarget/WA70/thexp-5.dat', 'datafiles/fixedTarget/WA70/thexp-6.dat', 'datafiles/fixedTarget/WA70positive/thexp-0.dat', 'datafiles/fixedTarget/WA70positive/thexp-1.dat', 'datafiles/fixedTarget/WA70positive/thexp-2.dat', 'datafiles/fixedTarget/WA70positive/thexp-3.dat', 'datafiles/fixedTarget/WA70positive/thexp-4.dat', 'datafiles/fixedTarget/WA70positive/thexp-5.dat', 'datafiles/fixedTarget/WA70positive/thexp-6.dat', 'datafiles/fixedTarget/NA10-286/thexp-0.dat', 'datafiles/fixedTarget/NA10-286/thexp-1.dat', 'datafiles/fixedTarget/NA10-286/thexp-2.dat', 'datafiles/fixedTarget/NA10-286/thexp-3.dat', 'datafiles/fixedTarget/NA10-286/thexp-4.dat', 'datafiles/fixedTarget/NA10-286/thexp-5.dat', 'datafiles/fixedTarget/NA10-286/thexp-6.dat', 'datafiles/fixedTarget/NA10-286/thexp-7.dat', 'datafiles/fixedTarget/NA10-286/thexp-8.dat', 'datafiles/fixedTarget/NA10-286/thexp-9.dat', 'datafiles/fixedTarget/NA10-286/thexp-10.dat', 'datafiles/fixedTarget/E615/thexp-0.dat', 'datafiles/fixedTarget/E615/thexp-1.dat', 'datafiles/fixedTarget/E615/thexp-2.dat', 'datafiles/fixedTarget/E615/thexp-3.dat', 'datafiles/fixedTarget/E615/thexp-4.dat', 'datafiles/fixedTarget/E615/thexp-5.dat', 'datafiles/fixedTarget/E615/thexp-6.dat', 'datafiles/fixedTarget/E615/thexp-7.dat', 'datafiles/fixedTarget/E615/thexp-8.dat', 'datafiles/fixedTarget/E615/thexp-9.dat', 'datafiles/fixedTarget/E615/thexp-13.dat', 'datafiles/fixedTarget/E615/thexp-14.dat', 'datafiles/fixedTarget/E615/thexp-15.dat', 'datafiles/fixedTarget/E615/thexp-16.dat', 'datafiles/fixedTarget/E615/thexp-17.dat',

Exercise 7 - settings

 \succ We need to modify the parametrization in parameters.yaml, as well as decomposition

Parameters:	Parameterisations:	Decompositions:	
Av: SUMRULE Bv: [0.75,0.03] Cv: [0.95,0.04, 0,10] As: [0.21,0.1] Bs: [0.5 ,0.1,-1,10] Cs: [8,3] Ag: SUMRULE Bg: 0 Cg: [3,1]	<pre>v: class: HERAPDF parameters: [Av,Bv,Cv] S: class: Normalized parameters: [As,Bs,Cs] g: class: Normalized parameters: [Ag,Bg,Cg]</pre>	pion: class: SU3_ valence: v sea: S gluon: g	

 \succ We also need to change evolution, and define it for both π^+ and π^-

Nice feature! In this way you have the same evolution used for π^- , just with inverted charged

SU3_Pion

We have to define a nuclear PDF set for both the incoming proton and the target (tungsten in this case)

70

Exercise 7 - results

- To obtain datafiles: \$> ln -s ~/Software/xfitter-master/datafiles .
- To run xFitter: \$> xfitter
- To draw your results: \$> xfitter-draw output
- > You need to compare these PDFs with i.e. JAM or GRVPI1
- Valence and gluon distributions in good agreement with JAM and both disagree with the early GRV analysis
 Phys. Rev. D 102 (2020) 014040

EXERCISE 8

Charged pion Fragmentation Functions

- > We assume the charge conjugate $\nu_{i^*} = \nu_{i^*}$ for all the flavour component
- > We fit the flavour combinations $i = u^+, d^+, s^+, c^+, b^+$ and g
- > We parametrise FFs at a starting scale of $Q_0^2 = 5 \text{ GeV}^2$
- > 19 free parameters in total

> Fitted distributions:
$$\frac{d\sigma^h}{dz}$$
, $\frac{1}{\sigma_{tot}}\frac{d\sigma^h}{dp_h}$, $\frac{s}{\beta}\frac{d\sigma^h}{dz}$, $\frac{1}{\beta\sigma_{tot}}\frac{d\sigma^h}{dz}$, ... $(z = 2E_h/\sqrt{s})$
Exercise 8 - settings

> \$> cd ~/xFitterTutorial/exercise8

> We need to add SIA and BELLE13/20 data in the steering.txt file

NInputFiles = 17

InputFileNames =

! Input files:

4 active flavour

'datafiles/NC_SIA/BABAR/inclusive/BABAR_inclusive_pi_o.dat', 'datafiles/NC_SIA/BELLE20/BELLE20_inclusive_pi_1.dat'

! Inclusive

'datafiles/NC_SIA/ALEPH/inclusive/ALEPH_inclusive_pi_h.dat', 'datafiles/NC_SIA/DELPHI/inclusive/DELPHI_inclusive_pi.dat', 'datafiles/NC_SIA/OPAL/inclusive/OPAL_inclusive_pi.dat', 'datafiles/NC_SIA/SLD/inclusive/SLD_inclusive_pi.dat', 'datafiles/NC_SIA/TASSO/inclusive/TASSO_12_inclusive_pi.dat', 'datafiles/NC_SIA/TASSO/inclusive/TASSO_14_inclusive_pi.dat', 'datafiles/NC_SIA/TASSO/inclusive/TASSO_22_inclusive_pi.dat', 'datafiles/NC_SIA/TASSO/inclusive/TASSO_34_inclusive_pi.dat', 'datafiles/NC_SIA/TASSO/inclusive/TASSO_34_inclusive_pi.dat', 'datafiles/NC_SIA/TASSO/inclusive/TASSO_44_inclusive_pi.dat', 'datafiles/NC_SIA/TASSO/inclusive/TASSO_44_inclusive_pi.dat',

! b tag

'datafiles/NC_SIA/DELPHI/b_tag/DELPHI_b_tag_pi.dat', 'datafiles/NC_SIA/SLD/b_tag/SLD_b_tag_pi.dat',

! c tag

'datafiles/NC_SIA/SLD/c_tag/SLD_c_tag_pi.dat',

! light tag

'datafiles/NC_SIA/DELPHI/light_tag/DELPHI_light_tag_pi_o.dat', 'datafiles/NC_SIA/SLD/light_tag/SLD_light_tag_pi.dat',

Exercise 8 - settings

We need to modify the parametrization in parameters.yaml, as well as decomposition

```
Parameters:
 ABp : [ 1.0199, 0.01618693 ]
 ACp : [ 1.1305, 0.01827819 ]
 ASp : [ 0.7049, 0.09370628 ]
 Ag : [ 2.0073, 0.03766856 ]
 Aup : [ 1.4261, 0.04923525 ]
 BBp : [ -0.4543, 0.04601485 ]
 BCp : [ -1.0443, 0.04583320 ]
 BSp : [ -0.5754, 0.55702822 ]
 Bg : [ 3.3722, 0.37066418 ]
 Bup : [ -0.7829, 0.04777496 ]
 CBp : [ 3.9881, 0.22672656 ]
 CCp : [ 4.6312, 0.16315390 ]
 CSp : [ 8.7524, 1.01469245 ]
 Cg : [ 58.3529, 3.15872362 ]
 Cup : [ 1.6871, 0.02898839 ]
 DBp : [ 17.0749, 1.31370713 ]
 DCp : [ 0.0000000, 0.00000000 ]
 DSp : [ 0.00000000, 0.00000000 ]
 Dg : [ 0.0000000, 0.00000000 ]
 Dup : [ 5.1060, 0.61927213 ]
 EBp : [ 9.0314, 0.68378218 ]
 ECp : [ 0.0000000, 0.00000000 ]
 ESp : [ 0.0000000, 0.00000000 ]
 Eg : [ 0.0000000, 0.00000000 ]
 Eup : [ 4.0594, 0.32218262 ]
 ZERO : [ 0.00000000, 0.00000000 ]
```

```
Parameterisations:
  par_up:
    class: Pion_FF
    parameters: [Aup,Bup,Cup,Dup,Eup]
 par_cp:
    class: Pion_FF
    parameters: [ACp,BCp,CCp,DCp,ECp]
 par_bp:
    class: Pion_FF
    parameters: [ABp, BBp, CBp, DBp, EBp]
 par_sp: # s=fs/(1-fs) * Dbar
    class: Pion_FF
    parameters: [ASp, BSp, CSp, DSp, ESp]
 par_q:
    class: Pion_FF
    parameters: [Ag, Bg, Cg, Dg, Eg]
```

> We also need to change evolution – to study antiproton, we used the same trick used for π^+ in Exercise 7 (<u>FlipCharge</u>)

DefaultDecomposition: Pion_FF_B_C
Decompositions:
 Pion_FF_B_C: #proton:
 class: Pion_FF_BC
 xup: par_up
 xcp: par_cp
 xbp: par_bp
 xsp: par_sp
 xg: par_g

75

Exercise 8 - results

- To obtain datafiles: \$> ln -s ~/Software/xfitter-master/datafiles .
- To run xFitter: \$> xfitter
- To draw your results: \$> xfitter-draw output
- You can compare these PDFs with NNLO NNFF1 and NLO JAM19 and DSEHS14
- Generally compatible with NNFF1 and DSEHS14 at larger z, but they differ at low-z (more pronounced for Fit E)
 PRD 104 (2021) 5 056019

➢ First of all, you need to download APPLgrid from <u>here</u>

- You can download the latest version available 1.6.32
- Then you need to download aMC@NLO from <u>here</u>
 - I would recommend you to download version 2.9.X/3.5.X (standard in ATLAS)

After having installed aMC@NLO you need to generate the process you want to simulate, so e.g. p p > I vI. An example set of commands might be:

import model loop_sm-no_b_mass define $p = p b b \sim$ define j = pdefine l = e+e-mu+mudefine $vl = ve ve \sim vm vm \sim$ generate p p > l vl [NLO]output run_Wlnu

If you have doubts, please follow the instructions on any MG5_aMC@NLO tutorial to produce this process

- Then download aMCfast and follow the instructions described <u>here</u>
- At this stage, you need to write your analysis file (I would suggest the topdrawer format). You have lots of examples in the FOAnalysis folder, please have a look there
 - It is in fortran, but it should be pretty straightforward to understand how to define new distribution

How to generate fixed order predictions

- Then you have to run first a preparatory run
- > To perform this preparatory run, we set in the run card

1 = iappl ! aMCfast switch (0=OFF, 1=prepare APPLgrids, 2=fill grids)

- Since at this stage the interpolation grids are not filled up, there is no need of a high accuracy, thus setting something like 0.01 = req_acc_FO in the run card is enough
- If the run finishes successfully, the code will have created the starting grid that now need to be filled up. So we have to run again the code giving: [launch -o ("-o" ensures that the code restarts the run from the grids generated in the previous run)
- > Now for this second run, we only need to edit the run card and to set:

```
2 = iappl ! aMCfast switch (0=OFF, 1=prepare APPLgrids, 2=fill grids)
```

- In addition, we might want to increase the accuracy of the integration by setting, for example: 0.001 = reg_acc_FO
- > Requiring an higher accuracy should get rid of the statistical fluctuation