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... and that’s just one keyword...
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DISCLAIMER

Too little time, too much
material...

Subject can be introduced and

discussed in many different
ways

Here only very few aspects can
be covered without going too
deep into details (apologies for
all the omissions!)

Today’s goal: a broad overview
of the underlying ideas



What is “resummation”?
Why do we want to resum?
How can we do it?

How well can we do it?

Examples, applications, directions

CONTENTS




FIRST SIGHTINGS, 1

I
D. Soper’s “Basics of QCD perturbation theory” lectures:

Summing logs
e For an infrared-safe process with one hard scale, the theory
is simple.

e If there are two hard scales, the theory is more complicated.

e Consider A+ B —-Z+ X
do

dPT dy
o If Pr ~ Mz, the theory is simple.

Pp

o If 1 GeV <« Pr <« Mz, there are two large scales.

+ T T s o g0

e In many cases like this, there are known formulas
for summing the logs.

]

99



FIRST SIGHTINGS, 1

I
D. Soper’s “Basics of QCD perturbation theory” lectures:

Summi-=~1~~-

p1

e For an infrared-safe proct ¢ Since the thrust distribution is infrared safe, o
is simple. we can calculate it in perturbation theory. s

e If there are two hard scall e At first order, one finds .

dO' d—T

e Consider A+ B — Z+ X do A a® 2\ Croas
- QQ Z r 2

N fthﬁy _ L[32-T)2-3T) 4-6T(Q-T), (271
° T ~ Mz, the theory 1s 1_T T B\ 7T
e If 1 GeV <« Pr < My, the *

TR ;=
- Note the log.

L4 CF = 4/3.

e In many cases like this, t _
e 7' — 1 corresponds to two narrow jets.

for summing the logs.

e do/dT is singular in this limit.




FIRST SIGHTINGS, 2

4 o

S. Marzani’s “Jets” lectures:

jet properties
* we want to studies the properties of jets

* hence, we resolve a (high p:) jet down to a smaller
scale, e.g. its mass

* large logarithms appear invalidating the fixed-
order expansion

* we nheed to reorganise the calculation so that we
can consider a ber of soff/collinear —
partons: resymmation

* vast field with many approaches: dQCU SCET, ete.



FIRST SIGHTINGS, 2

— e
S. Marzani’s “Jets” lectures:

jed | the jet mass

* we want fo stuc

quark jets: m [GeV], for p; =3 TeV LO
* hence, we resoly a0 w0 e 1do
& plain jet mass o O dm2
scale, e.g. its me B iz
—n [
. 2f 1 — 95 aa(
* large logarithm s 2
order expansion g %6 (m —2(1 —2)6°p )
0.1 : asCF - 1
g = d
* we need to reort Y /m 2 R i g?(z)
can couslder awuw‘ e BT | a:Cr A (3
partons. v p =m?/(pf R) oo 4
double log: soft & coll. single log: hard coll. |

* vast field with v
* plain jet mass: Sudakov peak, where does it come from ?

* [et’s do an easy calculation: one gluon emission in the
collinear limit



WHAT IS RESUMMATION?

Loosely speaking, resummation means reorganization of the perturbative series in such a way
that the subsets of the dominant logarithmic terms are systematically grouped together to all
orders.

72  The form of this expression is specific to a given problem and only valid in the region
where the logs are large.

Various types of logarithms:
?  Renormalization and factorization logs: o" log" (Q?/p?) -> running of a; DGLAP
2  High energy, small-x logs: o." log"* (s/t) -> BFKL equation
2 Sudakov logs: o."log?"1(7)
threshold logs =1-z, z=M?/s, z=Q?/s, ...
recoil logs {=p;%/Q? —
thrust =1-T



THE GOAL

Systematic reorganization of perturbative series

o ~ coo +

+Oés( c12 log? (52) + c11log (52) + c10 ) & NLO

Ta2(| caalog? (82) T caszlog® (B2)| T cazlog? (8%) + ) & NNLO

A A
a log 20(B2)  a,"log 2"1(B?) log(B2)<=>log(N)=L




THE GOAL

Systematic reorganization of perturbative series

o ~ coo +

_|_as( ci2log? (82) | 4 cirlog (B%) |+ cio ) & NLO

Ta2(| caalog? (82) T caszlog® (B2)| T cazlog? (8%) + ) & NNLO

A A
a log 20(B2)  a,"log 2"1(B?) log(B2)<=>log(N)=L

resummation: often in a conjugated space, e.g. a space of Melin moments N, taken wrt. 1-B2

[6(N) ~ C(ag)exp|[Lgi(asL) + ga2(asL) + asgs(asL) + .. ]J

N\

sums up LL: a."log "1 (N) NLL: oa,"log" (N)




BENEFITS

Resummation extends accuracy of the
perturbative prediction beyond fixed-
order by adding a systematic treatment

of the logarithmic contributions to all ;
orders o 1

[
Ll .
30_i l. do/dQy (pb/GeV) I CDF A

166 < Q < 116 GeV

2  restoration of predictive power resummation

10 (+power corr.)

?  Dbetter description of observables ->
reduction of the theoretical error (and

we need precision for the LHC!) ol - e -
Qp (GeV)
7 probe of the all-order structure of the Z boson pr @Tevatron from [AK, Sterman,
perturbation theory Vogelsang’03]

from [Moch, Vermaseren, Vogt’05]



BENEFITS

Resummation extends accuracy of the
perturbative prediction beyond fixed-
order by adding a systematic treatment
of the logarithmic contributions to all
orders 2o/

[
Ll .
30_i 4 do/dQy (pb/GeV) I CDF A

166 < Q < 116 GeV

1

2 restoration of predictive power resummation

10 (+power corr.)

?  Dbetter description of observables ->
reduction of the theoretical error (and
we need precision for the LHC!)

O —— 77— 80 T LB LA LA

?  probe of the all-order structure of the B : o i B I 0(pp — H+X) [pb]
perturbation theory i : ) Ma= 1206V
?  by-product: approximation of the fixed- AR N S
order result from expansion of the all- R R
. R
order resummation e 3. 1,0 e ]
— No,.. 10"

NLO

05 1 2 3

from [Moch, Vermaseren, Vogt’05]



BENEFITS

Resummation extends accuracy of the
perturbative prediction beyond fixed-
order by adding a systematic treatment
of the logarithmic contributions to all
orders

?  restoration of predictive power

?  Dbetter description of observables ->
reduction of the theoretical error (and
we need precision for the LHC!)

A  probe of the all-order structure of the

'-:‘ 66 < Q <
Nl

201kt

10

[ 1 do/dQy (pb/GeV) T coF |
| |

116 GeV

resummation
(+power corr.)

80 T T T
t o(pp — H+X) [pb]

80 —————— .
1 t o(pp — H+X) [pb]

F R V.7, WK § 4

Roughly speaking, fixed-order and resummed calculations are valid in different kinematical
regimes (e.g. large prvs. small py). Therefore, to take benefit of both they should be matched

Aomatched = de ixed—order T (A0res — AOpes | expanded up to the same order )

resulting in NLO+NLL, NNLO+NNLL etc.




BENEFITS

Resummation extends accuracy of the
perturbative prediction beyond fixed-
order by adding a systematic treatment
of the logarithmic contributions to all
orders

?  restoration of predictive power

?  Dbetter description of observables ->
reduction of the theoretical error (and
we need precision for the LHC!)

A  probe of the all-order structure of the

10

20 4

L T T T T
[ 1 do/dQy (pb/GeV) T coF |
| |

166 < Q < 116 GeV
o

resummation
(+power corr.)

T T T 80 T
o(pp — H+X) [pb] 1 t o(pp — H+X) [pb]

F R V.7, WK § 4

Roughly speaking, fixed-order and resummed calculations are valid in different kinematical
regimes (e.g. large prvs. small py). Therefore, to take benefit of both they should be matched

Aomatched = de ixed—order T (A0res — AOpes | expanded up to the same order )

but how to get there? j

resulting in NLO+NLL, NNLO+NNLL etc.

T 7 2 Y J



TAKE YOUR PICK

~_ Analytical methods

State of the art
<« accuracy from N4LL

.
processes to NNLL
DQCD SCET 2  Full control over
(direct QCD) N— theoretical accuracy
.

Separate
calculations for each

' process and
/ observable
L Numerical

72  Automatized tools
MC Parton /
2  General-purpose and

Showers _ _
fully differential
T ?  Accuracy (N(N))LL
see lectures by D. Soper and R. Frederix 72  Improving accuracy is

currently a very
active field



METHODS

Historically, various approaches (or “schools”) have been formed:

72 based on factorization of matrix elements and cross section [Catani,
Trentadue, Parisi, Petronzio et al.] [Dokshitzer et al.] “bottom-top”

72 based on renormalization group [Collins, Soper, Sterman et al.] “top-bottom”

72 based on the effective field theory approach -> Soft Collinear Effective Theory
(SCET) dominant mode selection at the Lagrangian level

Different at technical level, but equally valid

Independent methods to arrive at the same formal accuracy -> validation of
theoretical predictions obtained with various methods

After all, physics is the same!



BACKTO E+E-

Ge ne ral nature Of the e This gives logarithmically divergent integrals
g singularities far ~ [EB L
D3 e M contains a factor 1/(p; + p3)?. F2dBsdcosbisdd 1
g \P1 + p3 (p1 +p3)? = 2E1 E3(1 — cos 613) - E3 E360%;
s e This is singular for #,;3 — 0 ~ / dE—% d;—j?’ do
and for E3 — 0. ‘\L 131
e The numerator has a factor 6,3 for small‘N soft collinear
* So
IM|? L 613 — 0 or E5 — 0

202
E3013

7 IR singularities cancel between real and virtual corrections (KLN theorem) for IR-safe observables

A

NLO total cross section:o,- + g, = g, (1 + %)

7 However, if phase-space for real emission restricted e.g. by the measurement being exclusive, (double)
logarithmic dependence on the phase-space boundary will appear!



ORIGIN OF LOGS

Consider a constrain on the phase-space of real emission in the form E6% < M

E

H—~&\ o m N
< E 2 2

oo [ [ s gy gy [ [
T

Qg dE [ d§? Qs @dE (1 d9® o« 2 [ Q
aT—I—UUN——CF/— 9—2@(E92 M)N—?CF/ N2 —5 = —5-Crlog Wi



ORIGIN OF LOGS

Consider a constrain on the phase-space of real emission in the form E6% < M

E
x—)—&)\ % m >
E < E 2
N—CF/d dH O(M — E6?) ~——Cp/d d0

dE [ d2 o CdE [t de? o 2 [ Q
O'T-I-O'UN——CF/ —@E92 M)N—?CF/Mf —2——%017108; i

If restriction on phase-space, real emission inhibited

gets large for M<<Q,

? cancellation between real and virtual correction unbalanced i e. when emission forced
7 finite logarithmic remnants which can get large! to be soft and collinear!

Same effect, appearing in many disguises, depending on the process, observable etc.

What about higher-orders?



FACTORIZATION OF MULTIPLE EMISSIONS

Factorization of soft and/or collinear emissions is the underlying principle behind
resummation

Intuitive: short distance incoherent with long distance dynamics, long-wavelength
soft gluons “insensitive” to short wavelength physics

Factorization of amplitudes and cross-sections and the exponentiation of single
emission probabilities -> “bottom-top”

All-order factorization separating dynamics at various energy scales (RG approach
in dQCD, SCET) “top-bottom”



EIKONAL APPROXIMATION IN QED

One photon emission in the soft k* = 0 limit

Eikonal approximation

P~ l‘ +lé ) _ u _ L . . .
‘ Py (» )2 (=iey"Ya(p) — eM p Z(p) enyttmg particle keeps
2p-k+k pk its 4-momenta —
k,

- “straight line”




EIKONAL APPROXIMATION IN QED

One photon emission in the soft k* = 0 limit

Eikonal approximation

kt << p*
‘ i(p+ k)z( iey”)ﬁ(p)%eMp—Mﬁ(p) -  emitting particle keeps
2 k+k pk its 4-momenta —

- “straight line”

Emission of two soft photons

p+k+k p+k
p u v u_v u v
pk p-(k +k,) p(k+k)\p- - k, p-

pk  pk, pk pk,
ki,

eikonal identity



EIKONAL APPROXIMATION IN QED

One photon emission in the soft k* = 0 limit

Eikonal approximation

‘ kH<< pH
i(p+ k) . N P - emitting particle keeps
(—iey")u(p) = eM —1u(p)
zzd 2 k+k’ ’ pk its 4-momenta =

- “straight line”

Emission of two soft photons

p+k +k, p+k,
v u_v u v
‘ P +(k, <> k,) = Ll ( ! + ! )= P P
P k p-(k +k,) pki+k)\p-k pk, pk pk,

k,,v

: - eikonal identity
Multiple soft photon emission

Independent, uncorrelated emissions
DK Factorization at the matrix element level

K, M,



“BoTtTOM-TOP" (1)

I 4 a4
Generic hard scattering process:

A A oo 1 Lo z z
G(z) ~ 69 [1 - Zn=1 fo dz1...dznd chLz( 1’d ’n")@( )(z,zl,...,zn)]

dwn(21,--32n) _ 1 7™ dw(z;)
21...dzn - n! i=1 dz;

In QED, multiple emissions uncorrelated,

In QCD need to account for colour charges and non-abelian nature

_ p;'
Meik({pi})=MBorn {pi}‘lugy E pl JM _ngj—; P k

i
P’ p'
p'+k
: 2
Kk . [W .
i : ‘ eik
P : P

e|konal current in QED in QCD

2 2 yu gy pp
=gs MBorn JJ (_g v/ = Born F |
‘ ! (p-k)(p"k)
In general, for n+1 ) ) ) p-p
i . M, = —95;|MBorn M, |T; - T\ M,
matrix element: [ My 11| 95| MpBorn| (- k)(p - k)< | 51 M)

72  Nevertheless, factorization can be achieved in a more complicated form



“BoTtTOM-TOP” (2)

I 4 a4
Generic hard scattering process:

A A o0 1 ) z Zn
G(z) ~ 69 [1 +Zn=1 fo dz1...dznd C’l"z( l’d ’n )o(n )(z,zl,...,zn)]

?  phase-space factorization @%(z, 21,.20) = [ [, OPs(z, z:)

depends on the process: @ps contains kinematical constraints, not always factorizable!

72 In practice, phase-space factorization often occurs in the space conjugate to the space of
kinematic variables

Threshold resummation, Mellin transform

6(1—2:—22:1) ! /dN “N(-z-) 20 In(1—2) < In N
2mi c

i

Transverse momentum p; resummation, Fourier transform

("T‘Z“T) = gya [ TR In(Q/5%) © (@)



“BOTTOM-TOP"” (3)

I 4 a4
Generic hard scattering process:

A A o0 1 Wnl|\Z Zn
6(z) ~ 60 [1 +Zn=1 fO dz1...dznd dz( l,d = )o(m )(z,zl,...,zn)]

A  If the amplitude squared and the phase-space factorize

dwpn(21,.--32n) __ 1 n dw(z;) (n) ) R n |
dzq...dzn - n! i=1 dz; GPS(‘Z)‘ZI: vy Zn) = Hi=1 Ops(z,zi)
oo 1 1 dw(z ) n
o(z) ~ o0 1+ZE [/ Zi = Ops(z, zz)]

dw(z")

1 Ops(z,2’)

~ 00 exp [asL2 - ]

z

~ 6oexp! dz’

exponentiation of lowest-order soft corrections



“ToP-BOTTOM"” RESUMMATION

Resummation of logarithms of ratios of the scales follows from factorization. In fact all
factorizations separating dynamics at different scales result in resummed expressions through
RG equation

Renormalization relations can be seen as factorization of the UV cut-off dependence A

Gbare(Aap7 gbare) =27 (A//J'ng(:u)) GR(Mapa gR(/J'))

dGbare

with u playing now a role of the factorization scale. From = ( follows the evolution

u% log Gr(p,p, gr(1)) = —u% log Z(A/p, gr(p)) = v(gr(1))

which can be solved

equation



RESUMMATION FROM FACTORIZATION

see E. Laenen, in Pramana 65(2004)1225

Single log resummation example: moments of the deep inelastic proton structure function factorize

as
1
F,p(N,Q) = / dz 2N ~1F; p(x,Q) = Co(N,Q/p) ég;p(N, 1)
0
where C, are IR safe coefficient functions and ¢4/ pis the quark distribution function. Since
d — InF5 p(N,Q) =0
n ks p(l
then d B
d d anomalous
d_'lnéq/P(\ QS(#‘)) = —#’E q(‘\' Q/ﬂ‘ as(ﬂ)) — 7(1('\ as(ﬂ')) dimension
and Ya(N, as(1)) = as(Q)15" (N)

Q

basP(N.Q) = dg/p(N, Qo) exp [/ i—“q-q(lv,as(u))] i’éq/p(N,Qo)fxp[as(Q)vé”(f\")ln(Q/Qo)],

Qo
. . . Q (Q)’Yél)
Resummation of single logarithms! _ (=
Qo well behaved
Resummation of double logarithms requires additional considerations of dependence on the second
variable (gauge vector ) via log(p;- n)



“ToP-BOTTOM"” RESUMMATION

Resummation of logarithms of ratios of the scales follows from factorization. In fact all
factorizations separating dynamics at different scales result in resummed expressions through
RG equation

Renormalization relations can be seen as factorization of the UV cut-off dependence A

Gbare(Aap7 gbare) =27 (A//J'ng(:u)) GR(Mapa gR(/J'))

dGbare

with u playing now a role of the factorization scale. From = ( follows the evolution

u% log Gr(, p, gr(p)) = —u% log Z(A/p, gr(1)) = v(gr(1))

which can be solved

equation

Proving factorization is highly non-trivial: requires all-order diagrammatic studies, pioneered
in the soft-collinear case by Collins, Soper and Sterman

Particular variants of the factorized expression from which a corresponding resummed
formula is derived are obtained by keeping the appropriate variable (e.g. transverse
momentum, energy fraction) fixed



UPSHOT: “Top-BOTTOM"” DQCD

Form factor
Hard Soft non-

function collinear
2

! : :]I Jets: evolution of
external (here
m incoming) partons

from 0805.3515

2 (p; - n;)?
Q ) ( TLQMQ) ,as(p,Q),G) X S (:Bl '182’0',5(/"'2)’6)

J ((—1;:37;‘7)2, as(#Q)’ 6)
gk

ﬁ
A
R
R
—
=
<
™
\-/
|
Q
A
=
o




THRESHOLD RESUMMED CROSS SECTIONS

Schematically, for colour singlet production [Catani, Trentadue’89][Sterman’87]
~ (N N N) A (N
V) — Hz(i )« Az( )AWY)
@ hard function soft-collinear radiation

universal factors; KNOWN

(P
1
. exponential functions

A; — perturbative function, A, =a/mt Cy,



APPLICATION TO HIGGS PRODUCTION

Higgs cross section: gluon fusion

70 B [ [ | [ [ I [ A
my = 125 GeV ]
i = my/2 ]
60 [ LHC 13 TeV Ho = My 2
g 00 sof bow
. H 2 [ + i 1
S = ta  >— mH a0 [ 9
ey
= i 1
g 000 © 30 ]
20 __ ..... — % . S B w56 4 s SEe % aen __
log (1 —mf/3) I + all constants in the exponent ]
10 o default —e— ]
i all constants in gg ]
i N-soft
0 | | | | | | |
. . y s g g & z z Z
NNLO+NNLL: [Catani, de Florian, Grazzini, Nason’03] = = g = Z E
o +
2 ¢ 3
2 =

[Bonvini, Marzani, Muselli, Rottoli’16]



COLOUR FLOW

Two external coloured legs

p' : 3
p'+k
p+k : ‘Meik
P P

Result for three coloured legs also involves only simple Casimir factors, but starting
from >= four legs objects in colour space

2 2

_ g 2 pp

Cr
(p-k)(p"k)

s Born

?  gluon emission off quark lines ~ T2 T¢

2  ingeneral, decompose amplitudes in a chosen colour basis (colour tensors with indices
of external partons)

i j
, ,- i j
e.g. \ / colour

‘ basis
9.9, — q]'ql (pos;mble
choice) K p f
k / /

c1 = 0;k041 co = 040k]

Consequence: soft emission function turns into a matrix in the colour space



THRESHOLD RESUMMATION FOR 2—>2 PROCESSES

WITH COLOUR & MASS IN THE FINAL STATE

2—2 process with nontrivial colour flow

(V) () (N) A (N) B
Okl — Hm—m 17 X A; Aj X Sij—kl,JI
g (g ~ v \W—/
hard function soft- collinear radiation soft wide-angle emission

universal factors; KNOWN process-dependent

S 77 from solving the renormalization group equation

0
(150 + a1 g ) S =~ S(N) = (V) T

matrices in colour space



THRESHOLD RESUMMATION FOR 2—>2 PROCESSES

WITH COLOUR & MASS IN THE FINAL STATE

2—2 process with nontrivial colour flow

(V) () (N) A (N) B
Okl — Hm—m 17 X A; Aj X Sij—kl,JI
g (g ~ v \W—/
hard function soft- collinear radiation soft wide-angle emission

universal factors; KNOWN process-dependent

S 77 from solving the renormalization group equation

0
(150 + a1 g ) S =~ S(N) = (V) T

matrices in colour space



TTBAR CROSS SECTIONS

log (1 —4m?/3)

Scale variation

280 0.7 T T T T T NILO T
06 | NLONNLL ———
240} LO | s o5l NNLO+NLL - - - - 1
NNLL S NNLO+NNLL ——
LL < I
220 t NLL : z 04
7 L NNLL £
° 180 | : ] L 02}t
! FIXI?;Z C())rder ——
160 1 NNLO+res =—— | | 0.1 1
140 ¢ LHC 8 TeV:m,, =173.3 GeV: A=0 ] 0 e
s Migp="79- s A=
20 MSTW2008 LOPNLO- NNLO 04 06 08 1 12 14 16 18 2

Vs [TeV]

[ Fiedler, Mitov, Czakon’13]



TTH@NNLO+NNLL

[ Balsach, AK, Motyka, Stebel]

ttH production cross section known at fixed order at NNLO in the “soft-Higgs approximation”
[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini’22] . Precision can be further improved by matching

with the NNLL soft gluon resummation [AK, Motyka, Stebel, Theeuwes’17]

log (1—Q?%/3)

pp—ttH+X

580 F T N | i

ML B
seo k- L1397 7.0 % |
Ho=my;+mpl2 I

3 ,

= 123 % 1 wo=H,2
© po=012. . §
1 7-point scale uncertainty
500 mi=125.0 GeV, m; =172.5 GeV, /S =13.6 TeV
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4-TOP PRODUCTION

[ [
[van Beekveld, AK, Moreno Valero, PRL 131 (2023) 21, 211901]
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Soft - Collinear Effective Theory (SCET) of QCD

[Bauer, Becher, Beneke, Chapovsky, Diehl, Feldmann, Fleming, Hill, Lee,
Luke, Manohar, Neubert, Pirjol, Rothstein, Stewart, ...’early 00s]

- dynamics of energetic particles moving close to the
light-cone and interacting with soft quanta

- effective Lagrangian built out of quark and gluon
fields with collinear and (ultra)soft momenta

EFTs provide useful framework for studying multi-scale
problems: scale separation = factorization

Resummation from solving RG equations of SCET in

momentum space [Becher,Neubert’06] [Becher,Neubert,Pecjak’07]
[Becher,Neubert,Xu’08]

Relation to direct QCD studied extensively [Bonvini,
Forte, Ghezzi, Ridolfi’12][Sterman, Zheng’13], [Almeida et
al.’14]

Energy
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hard

collinear



TTH@NNLO+NNLL

Comparison with the NNLL+NNLO result based on SCET [Broggio, Ferroglia, Pecjak, Yang’16] within
the framework of the ttH LHCHWG subgroup
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NNLO +NNLL  scit % Two very different frameworks:
1rect
sool ] perturbative “full” theory (QCD) vs
effective theory (SCET)
80T ] I Analytical formulas agree at NNLL
)
$ ol | Different subsets of subleading terms are
included beyond NNLL - small
7-point scale uncertainty numer'cal d|fferences
my=125.0 GeV, m;=172.5 GeV, \/E: 13.6 TeV
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NNLO: PRL 130(2023)111902 Results for central scale choices agree
SCET: JHEP 02(2017)126 L .
Direct QCD: PRD 97(2018)114007 within a few perm|||e
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[NNLL dQCD: Balsach, AK, Motyka, Stebel] [NNLL SCET: Broggio, Ferroglia, Pecjak] [NNLO: Devoto, Grazzini, Kallweit, Mazzitelli, Savoini]



OTHER LOGS: Z PT

dQCD SCET
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OTHER LOGS: THRUST
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resummed: N3LL

fixed-order: NNLO

[ Bechert, Schwartz’08], see also [Abate et al.]’10°12




FURTHER SYSTEMATIC IMPROVEMENTS

Analytical resummation techniques lend themselves to further systematic improvements w.r.t.
logarithmic accuracy

7 calculations of anomalous dimensions at higher orders increase accuracy of resummation exponents

v apart from exponents also hard function needed: fixed-order loop calculations keeping info on the
colour structure

7 consistent matching with fixed order, resulting in NXLO+NVYLL predictions

Next-to-eikonal approximation [Laenen, Magnea, Stavenga, White, Bonocore, Vernazza,Larkoski, Neill,Stewart,
Kolodrubetz, Moult, Stewart, del Duca, van Beekveld, Beneke, Jaskiewicz, Szafron, ...]

do & o\ 25 gy [log™ 5 0
z-L(z) L [”( ?:é) + cio 8(8) + chm Tog" & + ..
n=0 m=0 + \

f T next-to-leading

treated in loops + real power logarithms,
standard phase-space factorization,
resummation exponentiation?



FURTHER SYSTEMATIC IMPROVEMENTS

Analytical resummation techniques lend themselves to further systematic improvements w.r.t.
logarithmic accuracy

7 calculations of anomalous dimensions at higher orders increase accuracy of resummation exponents

v apart from exponents also hard function needed: fixed-order loop calculations keeping info on the
colour structure

7 consistent matching with fixed order, resulting in NXLO+NVYLL predictions

Next-to-eikonal approximation [Laenen, Magnea, Stavenga, White, Bonocore, Vernazza,Larkoski, Neill,Stewart,
Kolodrubetz, Moult, Stewart, del Duca, van Beekveld, Beneke, Jaskiewicz, Szafron, ...]

do = OLA\N 2n—1 1 log™ 5 0
% - Z (?S) Z |:C£1m ) ( '% g ) + szm)5(§) + Cgmz ]0gm§ +...
n=>0 m=0 +
A N\
Other topics of research: resummation of EW logs, combined QCD and EW resummation,

non-global logarithms, small-x resummation, (semi-)numerical approaches, combined
resummations, ...




SUMMARY

Resummation crucial for proper description of multiple classes of observables probing the IR
dynamics

Well established techniques: direct QCD and SCET

As the ability and accuracy of higher-order calculation grows, so does the accuracy of
resummation

NNLL pretty much standard now, some quantities already known at N3LL and N“LL
Higher logarithmic accuracy than those offered by parton showers, systematically improvable

Very dynamical field, many new developments



