Experimental Review of Electroweak and Higgs Physics

CTEQ 2024 Summer School

Münster, Germany 21.8.-31.8.2024

Johannes Haller Matthias Schröder

Universität Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

content of today and tomorrow

Lecture 1: Electroweak physics

- electroweak precision tests:
 - precisions measurement with single Z and W bosons
 - o LEP legacy, new LHC results: $\sin^2 \theta_{eff}^l$, $\Gamma(Z \to inv)$, M_W , Γ_W , $\mathcal{B}(W \to \tau \nu_{\tau})$
 - global checks of internal consistency, aka 'global EW fits'
- multiboson production at high energies: TGC and QGC
 - diboson production, triboson production
 - o vector-boson scattering (VBS), towards polarized VBS

Lecture 2: Higgs physics

- Higgs boson properties (mass, spin and parity, width)
- Higgs boson couplings
 - signal strength, differental cross sections, Simplified Template Cross Sections (STXS), CP violation in the Higgs sector
- Probing the Higgs potential

content of today and tomorrow

Personal selection from huge wealth of ATLAS and CMS Higgs physics results Usually very similar results by both experiments, and much more than I can cover

You can find all Higgs physics results at the <u>ATLAS</u> and <u>CMS</u> public pages

The Higgs boson: a special particle

Higgs boson plays a special role in SM: emerges from mechanism that generates the masses of the fundamental particles

- Only scalar particle (spin 0, CP even)
- Couples in unique way to other particles:
 - to bosons $\propto m_V^2$
 - to fermions $\propto m_{\rm f}$

 $\begin{array}{c}
c \\
u \\
\gamma \\
H \\
g \\
b \\
T \\
W \\
H \\
Z \\
v_e \\
\mu \\
e \\
v_{\tau} \\
v_{\mu} \\
\end{array}$

Precise prediction of all Higgs boson properties and interactions Only free parameter is Higgs boson mass

Higgs boson excellent probe of Higgs mechanism + window to new physics

"Experimental history":

- > Indirect constraints on $m_{\rm H}$ from EWK fits
- Direct searches at LEP and Tevatron
- Discovery at the LHC in 2012
- Since then: measure everything we can!

The Higgs boson: a special particle

What is the origin of the early Universe inflation?

• Any imprint in cosmological observations?

Higgs boson is connected to major open questions in particle physics and cosmology

Nature 607 (2022) 41

Higgs

boson

The Higgs boson at the LHC

Coupling to 3rd generation fermions established First observation of Yukawa interactions

Higgs boson production at the LHC

Gluon-gluon fusion (ggF): 48.6 pb (87%)

Vector boson fusion (VBF): 3.8 pb (7%)

W/Z associated production (VH): 2.3 pb (4%)

t/b associated production (ttH/bbH): 0.5 pb (1%)

Higgs boson production at the LHC

Gluon-gluon fusion (ggF): 48.6 pb (87%)

Vector boson fusion (VBF): 3.8 pb (7%)

W/Z associated production (VH): 2.3 pb (4%)

t/b associated production (ttH/bbH): 0.5 pb (1%)

Experimental access to the Higgs boson

At 125 GeV: many open channels — experimentally very lucky!

Different experimental challenges, not all channels accessible

- Sensitivity depends on branching ratio, selection efficiency and resolution of final-state objects, background composition
- > All detector components needed in Higgs boson analysis

Continuous progress in analysis methods, machine-learning (ML) techniques have become a key tool

 $H \rightarrow \gamma \gamma$ candidate

ttH with H \rightarrow bb candidate

What we want to know about the Higgs boson

High-resolution channels H \rightarrow ZZ(*) \rightarrow 4l / H \rightarrow $\gamma\gamma$

 $4I/\gamma\gamma$ channels have driven discovery and subsequent measurements of the Higgs boson

Tiny rates but very clean experimental signatures

- > 4 leptons $(4\mu/4e/2\mu 2e) / 2$ photons, isolated + high p_T
- > e, μ , γ measured with excellent resolution O(1%)

ATLAS: <u>Eur. Phys. J. C 80 (2020) 957</u> <u>JHEP 07 (2023) 088</u> CMS: <u>Eur. Phys. J. C 81 (2021) 488</u> <u>JHEP 07 (2021) 027</u>

BR = 0.01%, small background

 $H \rightarrow \gamma \gamma$ (low signal purity)

BR = 0.23%, large background

High-resolution channels H \rightarrow ZZ^(*) \rightarrow 4l / H $\rightarrow \gamma\gamma$

Properties

Higgs boson mass

Reminder: $m_{\rm H}$ only free parameter of SM Higgs sector

(Weak) indirect constraints from combined EWK fits (100+/-25 GeV) $\frac{arXiv:2211.07665}{Direct measurements in high-resolution channels H <math>\rightarrow ZZ^{(*)} \rightarrow 4I, H \rightarrow \gamma\gamma$

Measurement precision at 0.1% level

- One of the most precisely known SM parameters
- Already high precision with early Run 1 results (discovery)

Challenge: control of lepton/photon momentum scale with very high precision

Particular effort in detector+object calibration

Analysis strategy e.g. $\rm H \rightarrow 4l$

- Events categorised by mass resolution
 - Event-by-event estimate from uncertainties of lepton reconstruction (track fit + ECAL meas.)
- > 2D fit of m_{41} and kinematic discriminants from matrix element calculations

Higgs boson mass

Combination of H \rightarrow **4l and H** $\rightarrow \gamma\gamma$ **from Run 1+2**: 0.09% relative precision Statistical uncertainties still larger than systematic (dominated by γ/l energy scale uncertainty)

UH

Higgs boson spin and parity

Determination of spin and parity one of the first "completed" tasks, already with Run 1 data

Experimental access:

- > Spin can be determined from angular distributions of Higgs boson decay products
 - Done in $H \to ZZ^{(*)} \to 4I, \, H \to \gamma\gamma$, $H \to WW$
 - NB: spin 1 is excluded since $H \rightarrow \gamma \gamma$ exists (Landau—Yang theorem)
- Different **parity** creates different spin correlations in Higgs boson decay products: look at angular distributions of their decay products
 - Done in $H \to ZZ^{(*)} \to 4I, \, H \to WW \to 2I2\nu$

Higgs boson spin and parity

Approach: test alternative hypotheses against SM prediction $J^P = 0^+$

Kinematic discriminants defined from ratios of event probabilities $P(m_{Z1}, m_{Z2}, \Omega \mid m_{4l}, J^P)$ computed from matrix elements, for different J^P and process hypotheses ("Matrix element likelihood approach")

Data strongly favours J^P = 0⁺ (SM hypothesis)

Pure states with different spin/parity values excluded

Higgs boson width

SM: small width $\Gamma_{H} = 4.1 \text{ MeV}$

(NB: Z boson width 2.5 GeV)

- Decay to off-shell vector bosons (W/Z) or loop suppressed (γγ)
- Small Yukawa couplings (small fermion masses)

Experimental resolution $m_{4I/\gamma\gamma} \sim 1-2$ GeV: Direct measurements by far not sensitive enough to reach SM value <u>CMS-PAS-HIG-21-019</u> <u>PRD 92 (2015) 072010</u>

- > Lineshape (4I): Γ_{H} <330 MeV at 95% CL
- Lifetime (4I): Γ_H >3.5x10⁻⁹ MeV at 95% CL

Indirect methods (model assumptions)

- > Main measurements: ratio off-shell/on-shell Higgs boson production in 41
 - Top processes with on-shell (ttH) and off-shell (4t) Higgs boson ($\Gamma_{\rm H}$ < 450 MeV) arXiv:2407.10631 (subm. to PLB)
- > Shift of H $\rightarrow \gamma\gamma$ due peak due to interference with background (~100 MeV)_{arXiv:1305.3854}

Indirect measurement of Higgs boson width

ATLAS: <u>Phys. Lett. B 846 (2023) 138223</u> CMS: <u>CMS-PAS-HIG-21-019</u>

$$\Gamma_{\rm H} = \sigma$$
 (off-shell) / σ (on-shell)

Best sensitivity H \rightarrow 4l channel: $\Gamma_{\rm H}$ = 2.9 $^{+1.9}_{-1.4}$ MeV

- Assuming same couplings g on shell and off shell (model dependence!)
- Experimental complication: interference with continuum ZZ* production

Couplings

Reminder: Higgs boson couplings in the SM

Signal strength

Basic input to coupling measurements: **signal strength** σ · **BR**

- Simplest check of SM compatibility
- > Typically quantified by **signal-strength modifier** μ

$$\mu(i \to \mathsf{H} \to f) = \frac{\sigma(i \to \mathsf{H})}{\sigma_{\mathsf{SM}}(i \to \mathsf{H})} \cdot \frac{\mathcal{B}(\mathsf{H} \to f)}{\mathcal{B}_{\mathsf{SM}}(\mathsf{H} \to f)} \equiv \mu_i \cdot \mu^f \quad \begin{array}{l} \text{Narrow-width approx. (SM: } \Gamma_{\mathsf{H}} = 4.1 \text{ MeV}) \\ \to \text{ production and decay factorise} \end{array}$$

Signal strength

Basic input to coupling measurements: signal strength σ · BR

- Simplest check of SM compatibility
- > Typically quantified by **signal-strength modifier** μ

$$\mu(i \to \mathsf{H} \to f) = \frac{\sigma(i \to \mathsf{H})}{\sigma_{\mathsf{SM}}(i \to \mathsf{H})} \cdot \frac{\mathcal{B}(\mathsf{H} \to f)}{\mathcal{B}_{\mathsf{SM}}(\mathsf{H} \to f)} \equiv \mu_i \cdot \mu^f \quad \begin{array}{l} \text{Narrow-width approx. (SM: } \Gamma_{\mathsf{H}} = 4.1 \\ \to \text{ production and decay factorise} \end{array}$$

$\boldsymbol{\mu}$ measured in various combinations of production and decay channels

MeV)

Signal strength

Basic input to coupling measurements: signal strength σ · BR

- Simplest check of SM compatibility
- > Typically quantified by **signal-strength modifier** μ

$$\mu(i \to \mathsf{H} \to f) = \frac{\sigma(i \to \mathsf{H})}{\sigma_{\mathsf{SM}}(i \to \mathsf{H})} \cdot \frac{\mathcal{B}(\mathsf{H} \to f)}{\mathcal{B}_{\mathsf{SM}}(\mathsf{H} \to f)} \equiv \mu_i \cdot \mu^f \quad \begin{array}{l} \text{Narrow-width approx. (SM: } \Gamma_{\mathsf{H}} = 4.1 \text{ MeV}) \\ \to \text{ production and decay factorise} \end{array}$$

$\boldsymbol{\mu}$ measured in various combinations of production and decay channels

Close to what we actually measure:

- In practice, analyses very complex
 - Many categories targeting different signal and background components to enhance signal significance and improve background modelling
 - Machine learning used at many levels, e.g. for categorisation and observables, regression

Example: H $\rightarrow \tau \tau$ decays

First observed (5 sign.) Higgs-fermion decay (2017), independently by ATLAS and CMS

Observation (CMS): $\mu = 1.09 \pm 0.26$ (2016 data) Phys. Lett. B 779 (2018) 283 Status today (CMS): $\mu = 0.82 \pm 0.11$ (full Run 2) Eur. Phys. J. C 83 (2023) 562

 $BR(H \rightarrow \tau \tau) = 6\%$ but relatively clear to tag over QCD multijets background

- Various categories targeting H production modes,
 τ decay channels, and kinematic regions
- > Dedicated τ reconstruction techniques: \rightarrow search in $m_{\tau\tau}$ or m_{vis} invariant mass

Major background Z $\rightarrow \tau\tau$ estimated from data using τ **embedding technique**

Replace μ by simulated τ decay products

Advantage: difficult to model hadronic part of the event taken from data

Example: H \rightarrow **bb/cc decays**

 ${\rm H} \rightarrow {\rm bb}$ dominant decay channel but <code>huge QCD multijets background</code>

Approach: look at events with Higgs boson recoiling against other objects that can be tagged above the background

Most sensitive: VH with V \rightarrow II/I_V/_{VV} μ = 1.15±0.21 (CMS Run 2) But also: PRD 109 (2024) 092011

- ttH: additional tt system
- VBF: two forward jets
- ggF + hard ISR jet: dijet with boosted H

Dedicated calibration of b jet energy scale using constraint of decay topology $H \rightarrow bb$, e.g. b jet regression

Ultimate sensitivity only by using **ML techniques**

- ➢ B tagging (rapid progress in techniques: BDTs → feed-forward NNs → Graph NNs, transformer NNs, ...)
- Final observable: NN output

Similar approaches for $\mathbf{H} \to \mathbf{c}\mathbf{c}$

- A lot of development also in c tagging
- Exclusion of about $\mu > 10$ at 95% CL PRL 131 (2023) 061801

Example: H \rightarrow **bb/cc decays**

 $H \rightarrow bb$ dominant decay channel but huge QCD multijets background Approach: look at events with Higgs boson recoiling against 2017 (13 TeV) GeV CMS Simulation other objects that can be tagged above the background 0.1 124.5 GeV. σ = 11.1 GeV PRD Z(l⁺ľ)H(bb) p_(Z) > 150 GeV egression + FSR recover **ш**́ 0.14 109 Most sensitive: VH with V \rightarrow II/I_V/_{VV} μ = 1.15±0.21 (CMS Run 2) 18. GeV. σ = 15.5 Ge³ 0.12 Without FSR recover (2024) 09201: PRD 109 (2024) 092011 u = 116 9 GeV σ = 16.3 Ge But also: 0. 0.08 ttH: additional tt system \geq 0.06 VBF: two forward jets 0.04 \geq 0.02 ggF + hard ISR jet: dijet with boosted H 200 140 160 180 M(jj) [GeV] Dedicated calibration of b jet energy scale using constraint 41.3 fb⁻¹ (13 TeV) 10 Entries of decay topology $H \rightarrow bb$, e.g. b jet regression CMS Data ggZHbb VV+HF Supplementary ZHbb 10⁶ 2-e, High p_{Tv} Z+bb Z+b Ultimate sensitivity only by using **ML techniques** PRI Z+udscq tt VV+I F B tagging (rapid progress in techniques: BDTs \rightarrow feed-forward 10⁴ Single top S+B uncertainty — VH.H→bb NNs \rightarrow Graph NNs, transformer NNs, ...) (2018)10² Final observable: NN output \geq 12180: Similar approaches for $H \rightarrow cc$ 10 Bkg A lot of development also in c tagging \geq Obs. Exclusion of about $\mu > 10$ at 95% CL <u>PRL 131 (2023) 061801</u> 0 0.2 0.4 0.6 0.8 DNN output

Example: top-Higgs coupling

Measurement in decay H \rightarrow tt kinematically not possible Indirect constraints from ggF production and H $\rightarrow \gamma\gamma$ decays *in

Direct measurement: **ttH production**

- Small cross section of 0.5 pb at 13 TeV (1% of total Higgs boson production rate)
- > Multitude of possible final states with many objects
 - Different backgrounds and experimental challenges
 - E.g. ttbb and ttW backgrounds difficult to model, systematically limit bb and multilepton channels
 - Dedicated analysis techniques per channel
 - By now also constraints on CP structure of top-Higgs coupling

*indirect constraints also from 4t and tt cross section

Signal strength measurements

Signal strength measured in many different channels: consistent with SM prediction

Problem: always measure production x decay, i.e. typically more than one coupling \rightarrow cannot unambigiously infer coupling from one measurement

Solution: combine information from measurements in many channels to infer couplings

к **framework**

Combine information from measurements in many channels to infer couplings

Idea: same coupling can be present in different production and decay channels

Coupling modifiers κ for each Higgs boson coupling vertex

 \rightarrow allow coupling strength

to vary relative to SM

$$\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{\rm SM}} \qquad \kappa_f^2 = \frac{\Gamma^f}{\Gamma_{\rm SM}^f}$$

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	\checkmark	t–b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	-	_	U	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	_	_		κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	_	_		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	_		κ_t^2
$\sigma(gb \to tHW)$	_	t–W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	_	t–W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	-	-		κ_b^2
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma^{ au au}$	_	_	,	κ_{τ}^2
Γ^{bb}	-	_		κ_{h}^{2}
$\Gamma^{\mu\mu}$	_	_		κ_{μ}^2
Total width ($B_{BSM} = 0$)			
				$0.57 \cdot \kappa_h^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
Γ_H	\checkmark	_	κ_{H}^{2}	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_{Z}^2 + 0.03 \cdot \kappa_{c}^2 +$
			11	$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(7\alpha)}^2 +$
				$0.0001 \cdot \kappa_{s}^{2} + 0.00022 \cdot \kappa_{u}^{2}$
				5 μ

1HFP 08 (2016) 045

к **framework**

Combine information from measurements in many channels to infer couplings

Idea: same coupling can be present in different production and decay channels

Coupling modifiers κ for each Higgs boson coupling vertex

\rightarrow allow coupling strength to vary relative to SM

$$\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{\rm SM}} \qquad \kappa_f^2 = \frac{\Gamma^f}{\Gamma_{\rm SM}^f}$$

E.g. top-Higgs coupling:

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	\checkmark	t—b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	_	_		$0.74\cdot\kappa_W^2+0.26\cdot\kappa_Z^2$
$\sigma(WH)$	_	_		κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	_	_		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	-	-		κ_t^2
$\sigma(gb \to tHW)$	-	t–W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	-	t-W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	-	-		κ_b^2
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	t–W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma^{ au au}$	_	_		$\kappa_{ au}^2$
Γ^{bb}	_	_		κ_h^2
$\Gamma^{\mu\mu}$	_	_		κ_{μ}^2
Total width ($B_{BSM} = 0$)			
				$0.57 \cdot \kappa_{b}^{2} + 0.22 \cdot \kappa_{W}^{2} + 0.09 \cdot \kappa_{o}^{2} +$
Γ_H	\checkmark	_	κ_H^2	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_{Z}^2 + 0.03 \cdot \kappa_{c}^2 +$
			**	$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z^{\sim})}^2 +$
				$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_u^2$

JHEP 08 (2016) 045

κ **framework**

Combine information from measurements in many channels to infer couplings

Idea: same coupling can be present in different production and decay channels

Coupling modifiers κ for each Higgs boson coupling vertex

\rightarrow allow coupling strength to vary relative to SM

 $\kappa_i^2 = rac{\sigma_i}{\sigma_i^{\mathrm{SM}}} \qquad \kappa_f^2 = rac{\Gamma^f}{\Gamma_{\mathrm{SM}}^f}$

Interference: cross section depends on κ (not κ^2) \rightarrow information on sign of coupling!

				51121 00 (2010) 010
			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	\checkmark	t–b	κ_g^2	$1.06\cdot\kappa_t^2+0.01\cdot\kappa_b^2-0.07\cdot\kappa_t\kappa_b$
$\sigma(\text{VBF})$	_	_		$0.74\cdot\kappa_W^2+0.26\cdot\kappa_Z^2$
$\sigma(WH)$	-	_		κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	-	-		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	-	-		κ_t^2
$\sigma(gb \to tHW)$	-	t–W		$1.84\cdot\kappa_t^2+1.57\cdot\kappa_W^2-2.41\cdot\kappa_t\kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	-	t–W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	-	_		κ_b^2
Partial decay width				
Γ^{ZZ}	_	-		κ_Z^2
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	t–W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma^{ au au}$	_	_		$\kappa_{ au}^2$
Γ^{bb}	-	-		κ_b^2
$\Gamma^{\mu\mu}$	-	-		κ_{μ}^2
Total width ($B_{BSM} = 0$))			
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
Γ_H	\checkmark	_	κ_{H}^{2}	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z\gamma)}^2 +$
				$0.0001 \cdot \kappa^2 + 0.00022 \cdot \kappa^2$

UH A

EW and Higgs physics

1HED 08 (2016) 045

We find exactly the unique coupling

Testing different coupling hypotheses

 κ framework allows testing different hypotheses of Higgs boson coupling structure, e.g.

- assume same coupling modifier for fermions and bosons \geq
- assume SM coupling structure, i.e. resolve loops

ATLAS: <u>Nature 607 (2022) 52</u> CMS: Nature 607 (2022) 60

Testing different coupling hypotheses

Allow contributions of BSM particles:

Н

 In the loops: do not resolve loops but introduce effective coupling modifiers κ_g,
 κ_γ, κ_{Zγ} to capture virtual contributions from new particles

Additional decays to new particles m<m_H (invisible/undetected in considered analyses)

Kγ

• Additional decays alter Higgs total width:

$$\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - {\rm B}_{\rm BSM}}$$

• Degeneracy between altering B_{BSM} and κ_{H} : resolved by constraint κ_{V} <1

Differential cross sections

Differential cross section measurements

So far: reconstructed distributions of observables compared to expected distributions from theory prediction (+detector simulation): results are model-dependent

> E.g. signal strength does not parametrise shape changes and results depend on SM prediction

Differential cross sections provide model-independent test of Higgs physics

- Cross sections as a function of one or more specific observable, e.g. p_T(H), N_{jets}, in fiducial phase-space region
 - Usually inclusive in production modes
- - In high-resolution channels, unfolding by simple matrix inversion often sufficient
 - Nowadays likelihood unfolding: uncertainties included via nuisance parameters
- Can be directly compared with theory prediction

Main channels: H $\rightarrow \gamma\gamma$ and H \rightarrow 4l, but also H \rightarrow WW, bb, $\tau\tau$

ATLAS: EPJC 80 (2020) 942 CMS: CMS-PAS-HIG-24-013

Differential cross section measurements

So far: reconstructed distributions of observables compared to expected distributions from theory prediction (+detector simulation): results are model-dependent

> E.g. signal strength does not parametrise shape changes and results depend on SM prediction

Differential cross sections provide model-independent test of Higgs physics

- Cross sections as a function of one or more specific observable, e.g. p_T(H), N_{jets}, in fiducial phase-space region
 - Usually inclusive in production modes
- - In high-resolution channels, unfolding by simple matrix inversion often sufficient
 - Nowadays likelihood unfolding: uncertainties included via nuisance parameters
- Can be directly compared with theory prediction

Main channels: H $\rightarrow \gamma\gamma$ and H \rightarrow 4l, but also H \rightarrow WW, bb, $\tau\tau$

Already first Run 3 measurements!

ATLAS: EPJC 80 (2020) 942

Differential cross section measurements

Syst. uncertaintie

 $= -11, \kappa_{b} = 1$

NNLOPS $\vec{K} = 1.1. + XH$

XH = VBF+VH+ttH+bbH+tH

Fitted ZZ* Normalization

 $\kappa_{\rm C} = 11, \kappa_{\rm b} = 1$

Data

d ${
m d}{
m d}{
m d}{
m d}{
m p}_{
m T}^{4l}$ [fb/GeV]

0.12

0.1

0.08

0.0

0.0

0.02

Н

ATLAS

 $H \rightarrow ZZ^* \rightarrow 4l$

Matrix Unfolding

√s = 13 TeV, 139 fb⁻¹

Example: Higgs boson p_T

Higgs sector, e.g. Higgs boson p_T sensitive to

- Modelling of QCD radiation \geq
- Higgs boson couplings: constraints on couplings not yet accessible directly, e.g.
 - Higgs-charm coupling

Combination of cross section measurements

ATLAS: Eur. Phys. J. C 84 (2024) 78 CMS: CMS-PAS-HIG-23-013

138 fb⁻¹ (13 TeV)

Combination of (differential) cross sections across channels requires some model assumptions, i.e. definition of fiducial volume is channel dependent

- **Branching** ratios \geq
- Possibly also kinematic regions

CMS Preliminary

102

Simplified Template Cross Sections (STXS)

Simplified Template Cross Sections (STXS)

Specific measurements (signal strength, κ -framework, spin, ...)

- > Maximum sensitivity by highly specific observables, e.g. machine-learning based
- > Theory predictions are direct part of the measurement, e.g. to build signal templates
- > Probe specific variation, e.g. only overall rate changes in signal strength measurements

Differential cross section measurements

- Best model and theory independence
- Smaller sensitivity: measurements use simpler cuts and observables
- Combination across channels only by introducing model dependence

Simplified Template Cross Section (STXS) "in between"

- Signal strength for each Higgs boson production mode
- Separated further in different phase-space regions ("bins")
 - Consistently defined across experiments and theory: useful for combinations and interpretations
- Likelihood unfolding from reconstruction-level categories that aim to match the particle-level bins
- Allows using arbitrary observables, e.g. machine-learning based, and including background control regions to maximise sensitivity

Example: STXS bins for ggH LHC Higgs Working Group

STXS example: $H \rightarrow 4I$

Different observables per category

> ggF: m_T (ggF), VBF: NN

Simultaneous fit to signal and control regions

Eur. Phys. J. C 80 (2020) 957

POIs: cross section in each STXS bin

STXS status: combination of decay channels

By now, STXS measurements in many channels: detailed probe of Higgs boson interactions

Combined fit of STXS across many channels

- $\succ \quad \mathsf{H} \to \gamma \gamma$
- $\succ H → ZZ^* → 4I$
- $\succ \ H \to WW^* \to e \nu \mu \nu$
- $\succ \quad \mathbf{H} \to \tau \tau$
- \succ H \rightarrow bb

Uncertainties correlated (common nuisance param.)

Nature 607 52 (2022)

CP violation in Higgs sector

CP violation in Higgs sector?

Pure Higgs states with non-SM spin/parity values excluded by Run 1 measurements

- But mixture of CP-even and CP-odd Higgs interactions conceivable \rightarrow **CP violation**
- Additional sources of CP violation needed to explain baryon asymmetry in early Universe

Very different structure of Higgs coupling to vector bosons and to fermions: implications for possible of size CP-odd couplings Phys. Rev. D 88 (2013) 076009

- > Vector boson couplings: CP violation requires dimension-6 operators
 - \rightarrow strongly suppressed by high mass scale
 - Similar strategy as spin/parity measurements
 - Pure CP-odd HVV coupling disfavoured

Fermion couplings: SM tree level (dimension-4 operators) possible
 → potentially large effects

$$\mathcal{L}(Hff) = -\frac{\mathrm{m}_{\mathrm{f}}}{\mathrm{v}}\bar{\psi}\big(\kappa_{\mathrm{f}} + i\tilde{\kappa}_{\mathrm{f}}\gamma_{5}\big)\psi\mathrm{H}$$

CP-even/CP-odd Yukawa coupling

SM:
$$\kappa_{f} = 1$$
, $\tilde{\kappa}_{f} = 0$

CP violation in Yukawa interactions?

Hot topic, first results only recently:

ttH with H $\rightarrow \gamma\gamma$ /multilepton/bb

 $H \rightarrow \tau \tau$ \geq

AS/(S+B) weighted events / bin

0.2

Dedicated observables (angular, NN/BDT) or relative rate changes of ttH and tH production

Pure CP-odd structure excluded at 3.7σ level

CP-even/CP-odd Yukawa coupling SM: $\kappa_f = 1$, $\tilde{\kappa}_f = 0$

ttH

Probing the Higgs potential

Higgs boson self-coupling

Self-coupling strength λ related to shape of the Higgs potential

- Responsible for electroweak symmetry breaking
- Implications for (meta-)stability of the vacuum

Measuring λ is a key objective of the remaining LHC Higgs programme

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{3}v H^{3} + \frac{1}{4}\lambda_{4} H^{4}$$

$$\frac{1}{2}m_{H}^{2}H^{2} + \frac{1m_{H}^{2}}{2v}H^{3} + \frac{1m_{H}^{2}}{8v^{2}}H^{4}$$

$$SM: \lambda_{3} = \lambda_{4} = \lambda = \frac{m_{H}^{2}}{2v^{2}}$$

$$Assuming SM: \lambda \text{ is fixed by } m_{H}$$

$$measurement! - but \text{ is true?}$$

Higgs boson pair (HH) production best direct probe of self-coupling

HH production at the LHC

Rare process in the SM: $\sigma_{HH} \sim 33.5$ fb (13 TeV), i.e. 1000 x smaller than single-H production

VBF channel unique probe of quartic VVHH coupling, $\sigma_{HH-VBF} \sim 1.7$ fb (13 TeV)

Search for HH production

ATLAS: arXiv:2406.09971 (subm. to PRL) CMS: <u>Nature 607 (2022) 60</u>

Higgs boson self-coupling

Limits on HH cross section \rightarrow limits on the Higgs boson self-coupling λ

Higgs boson self-coupling

Benefits from combination of HH and single-H measurements

- > Single-H production indirectly sensitive to λ via higher-order corrections
 - Similar sensitivity to direct HH searches, but model dependence
 - Both rate and shape effects, e.g. $p_{T}(H)$ (differential measurements!)
- Single-H production provides strong constraints on κ_t : allows measurement of κ_λ without assumptions on κ_t

What we know about the Higgs boson

12 years after the discovery

<u>Mass</u> 125.11 +/- 0.11 GeV (0.1% precision!)

Other properties

Spin/parity 0⁺ (pure state) $\Gamma_{\rm H} = 2.9 \, {}^{+1.9}_{-1.4} \, {\rm MeV}$ (indirect)

Couplings to bosons and fermions

Couplings at ~5–20% precision $\gamma\gamma$ /WW/ZZ directly observed $\tau\tau$ /bb/tt directly observed Evidence for H $\rightarrow \mu\mu$

Self coupling

-1.24 < κ_λ < 6.49 at 95% CL

Additional remarks

Interpretation in Effective Field Theories (EFT)

BSM Higgs

SM Higgs sector simplest form to provide particle masses, but could be more complicated, e.g.

- > Extended Higgs sector, e.g. two doublets \rightarrow additional Higgs bosons
- Higgs boson could couple to non-SM sector, e.g. Dark Matter particles

1. Higgs boson precision measurements crucial to probe SM nature of Higgs sector:

any deviation from the SM prediction is a clear signal of new physics

- ▶ E.g. couplings SM-like within measurement precision (~5—20%): room BSM effects
- 2. Vast amount of direct searches for BSM Higgs signatures
- Direct searches for additional Higgs bosons
 - Typically heavier than 125 GeV
 - But also light (<125 GeV) Higgs bosons conceivable, e.g. with large scalar admixture such that reduced coupling to vector bosons (LEP limits not valid)
- Direct searches for non-SM couplings of the Higgs boson
 - Lepton-flavour violating decays $H \to e \mu$
 - ",H \rightarrow invisible" decays, e.g. decays to Dark Matter particles
- > 125 GeV **Higgs boson tool in searches** for other heavy particles
 - Decays of new heavy particles to $HH \rightarrow$ searches for resonant HH production

Summary of second part (Higgs)

Higgs boson discovery has started new era in particle physics: we are probing the mechanism that generates masses at the fundamental level!

Higgs boson offers a unique window to test the SM and search for the physics beyond

Rhich Higgs physics programme at the LHC

- Large datasets and vast progress in experimental methods
- Measuring Higgs-boson properties and couplings to vector bosons and heavy fermions with ever increasing precision, differential measurements in many cases
- Evolving suite of interpretations matching experimental precision

Run 3 at full swing + HL-LHC at the horizon: A bright Higgs future ahead!

More Higgs bosons being produced as we speak!

