Experimental Review of Electroweak and Higgs Physics

CTEQ 2024 Summer School

Münster, Germany 21.8.-31.8.2024

Johannes Haller Matthias Schröder

Universität Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

disclaimer

- we live in a time of enormous progress in Higgs and EW results
- the LHC is like an Eldorado for this field of physics
- a wealth of new results is becoming available

- in 2h we can only talk about a tiny fraction of these results
- results shown reflect a personal selection
 - mixture of historical review with latest results

for all the progress in the theory sector \rightarrow lecture by D. Zeppenfeld

content of today and tomorrow

Lecture 1: Electroweak physics

- electroweak precision tests:
 - precisions measurement with single Z and W bosons
 - o LEP legacy, new LHC results: $\sin^2 \theta_{\text{eff}}^l$, $\Gamma(Z \to \text{inv})$, M_W , Γ_W , $\mathcal{B}(W \to \tau \nu_{\tau})$
 - global checks of internal consistency, aka 'global EW fits'
- multiboson production at high energies: TGC and QGC
 - diboson production, triboson production
 - o vector-boson scattering (VBS), towards polarized VBS

Lecture 2: Higgs physics

- Higgs boson properties (mass, spin and parity, width)
- Higgs boson couplings
 - signal strength, differental cross sections, Simplified Template Cross Sections (STXS), CP violation in the Higgs sector
- Probing the Higgs potential

The electroweak sector of the SM

- EW sector is based on local gauge symmetry $SU(2)_L \times U(1)_Y$
- electroweak gauge bosons:

 $W^+, W^- \xrightarrow{\mathbb{Z} = -\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}}_{+ i \,\psi \,\psi \,\psi \,+ \,h.c.} \mathcal{H} \text{ via spont. symmetry breaking)}$

- with HO: theory provides precise predictions of masses of gauge bosons and their interaction strengths
- > allows rigorous tests of the theory

 $SU(2)_L \otimes U(1)_Y$

Tests of the electroweak theory

current HEP (at the LHC) follows two approaches:

detailed tests of non-trivial quantum effects and internal consistency of the electroweak sector

Tests of the electroweak theory

Figure 2: Distributions of m_{ib} (left) and $m_{\ell\ell}$ (right) in the signal region. The nor

precision measurements with Z bosons

most important EW measurements done at LEP

fanastic experimental conditions

- lepton collider is perfect maschine for electroweak precision measurements
 - collision of known fundamental particles
 - centre-of-mass energy is exactly known in each event
 - events are experimentally clean
 - hardly any backgrounds (superb S/B ratio)
 o no pile-up or underlying event
 - EW processes have small cross-sections \rightarrow basically no trigger preselection
- particles in energy reach can be studied with great precision (e.g. Z, W)
- only with LEP data, the SM entered the precision era

most precise EW measurement: Z⁰ lineshape

ADLO, Phys.Rept.427:257-454,2006, hep-ex/0509008

92

44718

0.482

94

E_{cm} [GeV]

E [MeV]

0.484

v - 101

measurements of FB asymmetries at LEP

ADLO, Phys.Rept.427:257-454,2006, hep-ex/0509008

physics with Z bosons at hadron colliders

Z bosons are studied at hadron colliders already for 40 years!

• discovery 1983/4 at UA1, UA2

- very few events : in total O(100)
- measurements with large uncertain

 $M_{Z \to \mu\mu} = 90.7 + 5.2 \pm 3.2 \text{ GeV/c}^2.$ $M_{Z \to e^+e^-} = 93.1 \pm 1.0 \pm 3.1 \text{ GeV/c}^2.$

- principle of measurements same as today
- but the picture has completely changed

the datasets collected at the LHC

LHC: fanatastic performance of accelerator and detectors

- Run 1: **7-8 TeV**, 2010-2012: ~25 fb⁻¹
- Run 2: **13 TeV**, 2015-2018: ~140 fb⁻¹
- Run 3: **13.6 TeV**, 2022-... >150 fb⁻¹

huge, well-calibrated datasets for a vast and diverse physics program

pile-up conditions are challenging for the experiments (reconstruction, calibration, triggering,...)

datasets at different energies: allow to probe energy dependence of SM predictions

lower trigger/reco thresholds, better reco of PU-impacted variables, e.g. W recoil, important for m_W

physics with Z bosons at hadron colliders

large + pure samples of Z (and W) events available at the LHC

- precise study of detector performance in large datasets possible ('tag & probe')
- already with subset of data: statistical uncertainty often negligible
 - e.g. recent CMS measurement of crosssection of inclusive Z production

o low PU run in 2017 \rightarrow better p_T^{miss} resolution and lepton isolation→ less background

 $\sigma(pp \rightarrow Z + X)\mathcal{B}(Z \rightarrow \ell^+\ell^-) =$

 1952 ± 4 (stat) ± 18 (syst) ± 45 (lumi) pb.

- dominant uncertainty from luminosity determination (2.3%)
- often done: further reduction by building ratios of cross-sections

ре 1.1 Ц 1.05

0.95 0.9

100

110

120 $m_{\mu^*\mu^*} \, [GeV]$

inclusive W and Z cross-sections at LHC

summary of inclusive measurements at different energies

these measurements represent most stringent tests of SM cross-section calculations at hadron colliders

data consistent with N3LO QCD with approximate N3LO PDFs within uncertainties (limiting currently in theory: PDF unc., HO QCD and EW) new 13.6 TeV results also available: CMS, ATLAS
 CMS

 ^a 16
 ^b Theory (N³LO QCD, MSHT20an3lo) ^b pp→Z/y^{*} + X→ℓℓ, 60 < m_{ℓℓ} < 120 GeV
 QCD scale uncertainty ^b pp→W⁺ + X→ℓ⁺ v_ℓ

summary of inclusive measurements at different colliders

- measurements consistent with theoretical predictions across different energy scales and different collisions ($pp \text{ vs } p\bar{p}$)
 - UA1 dataset collected within minutes at LHC

mainly tests of QCD-sector, but high-precision hadron collider data also enable high precision EW tests !

measurement of weak mixing angle at LHC

measurement of weak mixing angle at LHC

measurements of ATLAS, CMS and LHCb focus on forward region

of weak mixing angle at CMS

CMS, subm to PLB, 2408.07622

> special effort to cover high |y| up to 3.4:

 $\sin^2 \theta_{eff}^l$

0 232

138 fb⁻¹ (2016-2018, 13 TeV)

- central electrons (e) and muons (μ): $|\eta| < 2.5$
- electrons in fwd ECAL (g): $2.5 < |\eta| < 2.87$

 $\cos\theta_{CS}$

A^w_{FB} comb

0.234

IS

- electrons in fwd HCAL (h): $3.14 < |\eta| < 4.36$
- > simultaneous fit of all $A_{FB}(|y|, m_{ll})$ values in all channels $(\mu\mu, ee, eg, eh)$ with varying $\sin^2\theta_{eff}^l$ (templates)

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00010 \,(\text{stat}) \pm 0.00015 \,(\text{exp}) \pm 0.00009 \,(\text{theo}) \pm 0.00027 \,(\text{PDF}),$ $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00031$

- single best measurement from hadron collider
 - PDF uncertainties dominant, profiled in central result

CMS

0.23

μμ ee

eg

eh

2016a

2016b

2017

2018

measurement of weak mixing angle at

μμ CMS ee/µµ eg eh

LHCb

brand new analysis by LHCb

- $Z \rightarrow \mu^+ \mu^-$ in full Run-2 dataset: 5.3 fb⁻¹
- LHCb: forward spectrometer
 - high quality μ reco: in 2.0 < η < 4.5
- \succ A_{FB} in 10 bins of $|\Delta \eta|$, inclusive in m_{ll}
 - best sensitivity on $\sin^2 \theta_{eff}^l$ at high $|\Delta \eta|$
- $\succ \sin^2 \theta_{\rm eff}^l$ extraction
 - comparing with POWHEG-Box templates
 - take average of PDF sets (NNPDF3.1, CT18, MSHT20)

result statistically limited, PDF unc. small \rightarrow anticipate sign. improvement for run 3

 $\sin^2 \theta_{eff}^{\ell} = 0.223$ $\sin^2 \theta_{eff}^{\ell} = 0.235$ Fit result LHCb, presentend at ICHEP2 SPD **** RICH2 M 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

 γ^2 /ndof = 7.6/9

lyl-m bin

EW and Higgs physics

summary: weak mixing angle

new hadron collider measurements with increasing precision

- nearing precision of LEP and SLD combined results !
- single best measurement from CMS
 - PDF uncertainties dominant
 - relative precision 0.13%

new measurements consistent with SM predictions from global fits

midway between SLD and LEP

situation as of today

direct measurement of invisible Z width at LHC

<u>CMS, Phys. Lett. B 842 (2023) 137563, 2206.07110</u> ATLAS, Phys. Lett. B 854 (2024) 138705, 2312.02789

EW and Higgs physics

precision measurements with W bosons

measurement of the W mass at LEP II

measurement of the W mass at LEP II

ADLO, Phys.Rept. 532 (2013) 119-244 ,hep-ex/1302.3415

EW and Higgs physics

measurement of W mass at ATLAS

ATLAS, subm to EPJC, 2403.15085 ATLAS, Eur. Phys. J. C 78 (2018) 110, 1701.07240

in ATLAS: this technique pushed to extreme precision

• large, pure samples of *W* available

Events / 2 Ge\

500

400

- dataset at 7 TeV:
 - ~15.5M W⁺, ~10.4M W⁻
 - moderate PU

- first m_W analysis published 2018
- recently updated: determination of both m_W and Γ_W (constrained and simultaneously)
 - · latest PDFs, better statistical method

measurement of W mass at ATLAS

measurement of the W mass at LHCb

similar measurement principle also used at LHCb

(simultaneous fit of q/p_T in W events and Collin-Soper ϕ^* (proxy for p_T^Z) in Z events)

summary of W mass measurements

LHCb-FIGURE-2022-003

LHC-TeV MW Working group, subm to EPJC, 2308.09417

CDF, Science 376 (2022), 170

CMS measurement urgently awaited to resolve this puzzle

branching ratios of the W boson

ATLAS, Nature Phys. 17 (2021) 7, 813, 2007.14040

ATLAS, subm to EPJC, 2403.02133

CMS, Phys. Rev. D 105 (2022) 072008, 2201.07861

global consistency of electroweak sector

crucial ingredient: mass of the top quark

all details: R. Schöfbeck

mass of the top quark has measured at LHC using different methods

• most precise experimentally: direct kinematic reconstruction in $t\bar{t}$ events

legacy combination of ATLAS+CMS Run 1 measurements published recently

experimental systematics dominates

further improvement from 13 TeV data

- e.g. most pricise single measurement (l + jets, CMS) $171.77 \pm 0.37 \, GeV$
 - sophisticated statistical methods to get most out of data

PDG avarage: $m_t = 172.57 \pm 0.29$ GeV

rel precision: 0.17%

crucial ingredient: mass of the Higgs boson

all details: tomorrow

mass of the H boson measured by ATLAS and CMS with great precision

using high-resolution channels $H \rightarrow 4l$ and $H \rightarrow \gamma \gamma$

litter group,

global tests of the internal consistency

precision tests done for a long time

- huge effort of theo and exp community
 - definition of (pseudo-)observables
 - measurements
 - HO calculations

ever increasing precision (both exp. and theo.)

system is overconstrained

- all free parameters measured meanwhile
- most important inputs from e⁺e⁻ colliders
 - mainly LEP: partly extreme precision o e.g M₇: 0.002 %
- crucial inputs from hadron colliders (LHC):
 - M_W , $\sin^2 \theta_{eff}^l$, m_t , M_H

m_{W} from CDF not used in the following experimental input

global tests of the internal consistency

enormous effort by theory community to calculate the respective observables

details not discussed in this experimental lecture, used for comparison with measurements

global fit of the electroweak sector

report here status of 2023 (party 2018), global picture does not change

global fit able to describe the EWPO, internal consistency

fit converges with $\chi^2_{min}/ndf = 13.8/15$ $\rightarrow p - value = 0.55$

largest tension remains $A_{FB}^{0,b}$ (LEP) and A_l (SLD).

 m_W from CDF II not used in the following

global fit of the electroweak sector

SM Parameters freely floating

_₹χ^{4.5}

4

3.5 3

2.5

2

1.5

Gfitter, Y Fischer, PoS EPS-HEP2023 (2024) 304

SM Parameters freely floating

electroweak sector very consistent (using M_W from LEP+LHC) hadron collider input (M_W , $\sin^2 \theta_{eff}^l$, m_t , M_H) driving the exp progress • we cannot know M_W and $\sin^2 \theta_{eff}^l$ precisely enough • further experimental improvements highly desirable - CMS M_W measurement awaited to clarify tension

measurements of EW processes at high E: multi-boson production

Multi-Boson production at LHC

CMS review, subm. to PhysRep., 2405.18661

Diboson production at LHC

CMS review, subm. to PhysRep., 2405.18661

first observed at TeVatron

Production cross section ratio: $\sigma_{exp} / \sigma_{theo}$

precision results available at LHC

- pure $W \rightarrow l\nu$ and $Z \rightarrow ll$ reconstruction + large datasets
- → already in Run-1: studies of major modes $\gamma\gamma, W\gamma, Z\gamma, OS W^{\pm}W^{\mp}, WZ, ZZ$
- \rightarrow Run-2: high precision measurements at several % level
 - most precise: WZ, ZZ with 3-4 % precision
 - need NNLO QCD + NLO EW calculations for comparison
 - o good agreement seen

EW and Higgs physics

Diboson production at LHC

importance of accurate SM predictions

- comparising precise σ_{ZZ} measurements with:
 - NLO QCD for $q\bar{q}$, LO QCD for gg
 - NNLO QCD + NLO EW for $q\bar{q}$, NLO QCD for gg
- \rightarrow contribution from NLO and NNLO QCD substantially increase cross sections
 - needed for agreement with experimental data

differential measurements for all diboson final states also done

- variety of variables: p_T^l , p_T^V , n_{jet} , p_T^{jet} , m_{VV} , ... (with sensitivity for HO QCD, HO EW or BSM)
- not covered here, in general decent agreement observed.

Triboson production at LHC

ATLAS, Phys. Rev. Lett. 129 (2022) 061803, 2201.13045 CMS, Phys.Rev.Lett. 125 (2020) 15, 151802, 2006.11191

ATLAS

-μ=1.61 -μ=1.0

CMS, summary plot web page

-1.5

 $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹

Data

-0.5

WWW (µ=1.61)

Background

/// Bkgd. Unc.

CMS: VVV collectively observed, individual evidence for WWW, WWZ

Johannes Haller

0.5

 $\log_{10}(S/B)$

Triboson production at LHC

CMS, additional material

with full Run-2 data, VBS observed in all major channels:

- plenty of results (incl. and differential): see ATLAS and CMS presentations at ICHEP24
- decent agreement with theoretical predictions within significant uncertainties
- constraints on aQGCs (EFT dim-8 operators)
- results are statistically dominated
- improved precision expected with more data (Run-3)

EW and Higgs physics

the next level: polarized Vector-boson scattering

CMS, Phys. Lett. B 812 (2020) 136018, 2009.09429

identification of scattering of longitudinally polarized WW: clear sign of presence of Higgs interaction in VBS

considered one of the crucial tests of EWSB mechanism

summary of first part (EW)

LHC provides a broad range of EW results (often far beyond initial expectations)

- recently many new, highly precise measurements of EW parameters (M_W , $\sin^2 \theta_{eff}^l$)
 - in combination with EWPO from $e^+e^ \rightarrow$ impressive internal consistency

- wide variety of EW processes identified; cross sections being measured with increasing precision
 - reaching few %-level in some cases
 - good agreement with SM prediction
 - testing non-trivial HO effects of theory

LHC Run-3 + HL-LHC: results will get even more precise

