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Summary of Lecture 1
1 Parton Distribution functions are a key ingredient of the LHC program

−→ PDFs are often the dominant source of uncertainty in theoretical predictions

−→ limiting factor for precision and discovery

2 PDFs are related to physical observales via factorisation and evolution
−→ qualitative PDF features are driven by this theoretical framework

−→ valence peak follows from valence sum rules and kinematic vanishing

−→ small-x rise follows from rise of anomalous dimensions

−→ correlation of small-x rise and large-x depletion follow from momentum conservation

3 PDFs are determined from experimental data by means of parametric regression
−→ need to define data, theory, and methodology

4 Different physical observables constrain different PDF combinations
−→ fixed-target NC DIS: u and d

−→ fixed-target CC DIS: s and s̄

−→ HERA NC and CC DIS: u, ū, d, d̄, g (scaling violations and tagged DIS)

−→ fixed-target DY: u and d at large x

−→ collider DY: u, ū, d, d̄, s

−→ collider DY+c: s (W ) and c (Z)

−→ ZpT , tt̄, jets: g

Lecture 2: Theoretical and methodological accuracy in PDF determination
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The ingredients of PDF determination

DATA
or

the set of observables

included in the analysis

METHODOLOGY
or

a prescription to

determine PDFs

THEORY
or

the theoretical details

of the QCD analysis

theorists’ tools

for precision physics

uncertainty representation

parametrisation

optimisation

validation

experimentalists’ input

of the QCD analysis

Each of these ingredients is a source of uncertainty in the PDF determination

Each of these ingredients require to make choices which lead to different PDF sets
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Overview of current PDF determinations
NNPDF4.0 MSHT20 CT18 HERAPDF2.0 CJ22 ABMP16

Fixed-target DIS 2� 2� 2� 4 2� 2�
JLAB 4 4 4 4 2� 4

HERA I+II 2� 2� 2� 2� 2� 2�
HERA jets 2� 4 4 2� 4 4

Fixed target DY 2� 2� 2� 4 2� 2�
Tevatron W , Z 2� 2� 2� 4 2� 2�
LHC vector boson 2� 2� 2� 4 2� 2�

LHC W + c Z + c 2� 4 4 4 4 4
Tevatron jets 2� 2� 2� 4 2� 4
LHC jets 2� 2� 2� 4 4 4
LHC top 2� 2� 4 4 4 2�

LHC single t 2� 4 4 4 4 4
LHC prompt γ 2� 4 4 4 4 4

statistical
Monte Carlo

Hessian Hessian Hessian Hessian Hessian

treatment ∆χ2 dynamical ∆χ2 dynamical ∆χ2 = 1 ∆χ2 = 1.645 ∆χ2 = 1

parametrisation Neural Network Chebyschev pol. Bernstein pol. polynomial polynomial polynomial

HQ scheme FONLL TR′ ACOT-χ TR′ ACOT-χ FFN

accuracy aN3LO aN3LO NNLO NNLO NLO NNLO

latest update
EPJC82 (2022) EPJC81 (2021) PRD103 (2021) EPJC82 (2022) PRD107 (2023) PRD96 (2017)

428 341 014013 243 113005 014011

All PDF sets are available as (x,Q2) interpolation grids through the LHAPDF library
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Parton Distribution Functions
Lecture 2: Theoretical and Methodological Accuracy

in PDF Determination
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Outline

2.1 Can we improve the fit quality by improving the theory?
heavy quarks and intrinsic charm

missing higher order uncertainties

electroweak corrections and the photon PDF

2.2 Why is the methodology important?
parametrisation

optimisation

uncertainty representation

validation of uncertainties

PDF benchmarks

I will focus on a limited selection of recent results

I will not talk about some very interesting topics (e.g. aN3LO PDFs, interplay between
fitting PDFs and New Physics, non parametric regression models, . . . )

See also lectures by J. Glombitza
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2.1 Theory
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Can we improve the fit quality by improving the theory?

10 4 10 3 10 2 10 1 100

x

101

102

103

104

105

106

107

Q2  (
Ge

V2 )
Kinematic coverage

Deep Inelastic Scattering
Fixed-Target Drell-Yan
Drell-Yan Rapidity Distribution
Drell-Yan Mass Distribution
Heavy Quarks Total Cross Section
Jet Transverse Momentum Distribution
Drell-Yan Transverse Momentum Distribution
Heavy Quarks Production Single Quark Rapidity Distribution
Heavy Quarks Production Rapidity Distribution
Jets Rapidity Distribution
Dijets Invariant Mass and Rapidity Distribution
Photon Production
Black edge: New in NNDPF4.0

Ndat = 4618 χ2/Ndat ∼ 1.19 (NNLO) 1σ =
√

2/Ndat ∼ 0.02
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2.1.1 Heavy Quarks
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Heavy Quarks in DIS
Two possible factorisation schemes for DIS structure functions

MS scheme

Heavy quarks are treated as massless (zero-mass scheme)
corrections proportional to ln(Q2/m2

h) are resummed to all orders by DGLAP

corrections that are O(m2
h/Q

2) are neglected

This scheme is appropriate when Q2 ≫ m2
h

Decoupling scheme

Heavy quarks are treated as massive (massive scheme)

corrections proportional to ln(Q2/m2
h) are treated at fixed order

corrections that are O(m2
h/Q

2) are included

This scheme is appropriate when Q2 ∼ m2
h

The third way: match the two schemes

General-mass variable-flavour number schemes (ACOT, S-ACOT, TR, FONLL, . . . )

use MS for Q2 ≫ m2
h with full mass dependence retained

keep all flavour sin running DGLAP

subtract double counting terms
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Intrinsic charm in QCD
What is intrinsic charm?

Do not factor charm mass singularities into operator matrix element

Choose nf = 3 scheme

Charm PDF purely intrinsic, scale-independent

Intrinsic charm is charm in the nf = 3 (decoupling) scheme

How to measure intrinsic charm?

Determine PDFs from data, go to nf = 3 result, look at the result

1) Parametrise PDFs in nf = 3 (3FNS) and match up for fitting

2) Parametrise PDFs in nf = 4 (4FNS) and match down for determining intrinsic charm

Large matching uncertainties [I. Bierenbaum et al.; J. Ablinger et al.]
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Perturbative vs Fitted Charm

10 4 10 3 10 2 10 1 100

x

0.02

0.01

0.00

0.01

0.02

0.03

xc
(x

)

c at 1.7 GeV
NNPDF4.0 (68 c.l.+1 )
NNPDF4.0 (pert.charm) (68 c.l.+1 )
NNPDF40 (w/ EMC) (68 c.l.+1 )
NNPDF3.1 (68 c.l.+1 )

Fitting charm modifies the flavour
decomposition and improves the fit

χ2
pert. charm = 1.19 → χ2

fitted charm = 1.17

mainly due to a worsening

of the LHC W,Z and top pair data sets

Small charm momentum fraction
C(Q2) =

∫ 1

0
dxxc+(x,Q2)

2.5 3.0 3.5 4.0 4.5

C(Q = 100 GeV) [%]

NNPDF4.0

NNPDF4.0 (w/ EMC)

NNPDF4.0 (pert. charm)

NNPDF3.1

101 102 103

mX (GeV)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 to
 N

NP
DF

4.
0

qq luminosity
s = 14 TeV

NNPDF4.0 (68 c.l.+1 )
NNPDF4.0 (pert. charm) (68 c.l.+1 )
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Total intrinsic charm

0.2 0.4 0.6 0.8

x

°0.02

°0.01

0.00

0.01

0.02

0.03

x
c+

(x
)

Intrinsic Charm, NNLO match (PDFU)

4FNS Charm, Q=1.51 GeV (PDFU)

Intrinsic Charm, N3LO match (PDFU)

0.2 0.4 0.6 0.8

x

°0.02

°0.01

0.00

0.01

0.02

0.03

x
c+

(x
)

Intrinsic Charm, NNLO match (PDF+MHOU)

BHPS model

Meson/Baryon Cloud model

0.2 0.4 0.6 0.8

x

0

1

2

3

4

|c+
(x

)/
δc

+
(x

)|

Intrinsic Charm

Baseline dataset

+ EMC Fc2
+ LHCb Z+c

+ EMC Fc2 + LHCb Z+c

Small but nonzero
valence-like intrinsic charm (3FNS)

Stable upon inclusion of MHOUs
(estimated as the difference between

NNLO and N3LO matching conditions)

Consistence with model predicitons

2.5σ significance for baseline
3.0σ with LHCb Z + c and/or EMC F c

2
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Intrinsic charm-anticharm asymmetry

0.01 0.03 0.05 0.1 0.3 0.5

x

−50

0

50

100

A σ
cc̄
(x
,Q

2
)

[%
]

Q2 = 20 GeV2

YADISM NNLO (c = c̄)

YADISM NNLO (c 6= c̄)

EIC
√
s = 63 GeV (L = 10 fb−1)

Small but nonzero
charm-anticharm asymmetry (3FNS)

MHOUs estimated as the difference between
NNLO and N3LO matching conditions

1.5σ significance for baseline
2.5σ with LHCb Z + c and/or EMC F c

2

Can be significantly improved at the EIC

Aσcc̄(x,Q2) ≡ σc
red(x,Q

2)−σc̄
red(x,Q

2)

σcc̄
red

(x,Q2)
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2.1.2 Missing Higher Order Uncertainties
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Perturbative Accuracy in PDF Determination
NNLO is the precision frontier for PDF determination

N3LO is the precision frontier for partonic cross sections

Mismatch between perturbative order of partonic cross sections and accuracy of PDFs
may become a significant source of uncertainty

σ̂ = αp
s σ̂0+αp+1

s σ̂1+αp+2
s σ̂2+O(αp+3

s ) δ(PDF− TH) =
1

2

∣∣∣∣∣∣σ
(2)
NNLO−PDFs − σ

(2)
NLO−PDFs

σ
(2)
NNLO−PDFs

∣∣∣∣∣∣
Higgs production in gluon-gluon fusion

[CERNYellowRep.Monogr. 7 (2019) 221]

W+ boson production in CC Drell-Yan

[JHEP 11 (2020) 143]
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MHOUs and Scale Variations
As an example, let us consider the NS DIS structure function

FNS
2 (N,Q2) = xCNS(N,αs(Q

2)) exp

[∫ Q2

Q2
0

dλ2

λ
γNS

(
N,αs(µ

2)
)]

fNS(Q
2
0)

Sources of MHOUs

γNkLO
NS (N,αs) = αsγ

(0)
NS + α2

sγ
(1)
NS + . . . αk+1

s γ
(k)
NS

CNkLO
NS (N,αs) = 1 + αsC

(1)
NS + . . . αk

sC
(k)
NS

Scale variations
Idea: αs(κ

2µ2) = αs(µ
2)[1 +O(αs)]

at NkLO differences due to higher orders are related to the QCD β function up to βk

C̄NS(αs(κ
2
rµ

2, κ2
r)) = CNS(αs(µ

2))[1 +O(αs)] fixes C̄
(k) in terms of C(k)

γ̄NS(αs(κ
2
fµ

2, κ2
f )) = γNS(αs(µ

2))[1 +O(αs)] fixes γ̄
(k) in terms of γ(k)

∆CNS = C̄NS(αs(κ
2
rµ

2, κ2
r))− CNS(αs(µ

2))
renormalisation scale (at which UV divergences are subtracted) µr = κrµ

∆γNS = γ̄NS(αs(κ
2
fµ

2, κ2
f ))− γNS(αs(µ

2))
factorisation scale (at which collinear divergences are factorised) µf = κfµ

Propagate ∆C and ∆γ into ∆f
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Scale Variations: Prescriptions

Vary µr and µf about µ0

Pick a set of possible variations

3-points: µr = µf , κr,f = 2, 1/2

7-points: µr, µf varied independently, κr,f = 2, 1/2, remove µr/µf = 4

9-points: µr, µf varied independently, κr,f = 2, 1/2

To estimate MHOUs, take the envelope,
i.e. the difference between the largest and smallest predictions
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A Theory Covariance Matrix
Assuming that theory uncertainties are (a) Gaussian and (b) independent from

experimental uncertainties, modify the figure of merit to account for theory errors

χ2 =

Ndat∑
i,j

(Di−Ti)(covexp + covth)
−1
ij (Dj−Tj); (covth)ij =

1

N

N∑
k

∆
(k)
i ∆

(k)
j ; ∆

(k)
i ≡ T

(k)
i −Ti

Problem reduced to estimate the th. cov. matrix, e.g. in terms of nuisance parameters

∆
(k)
i = Ti(µR, µF )− Ti(µR,0, µF,0); vary scales in 1

2
≤ µF

µF,0
, µR
µR,0

≤ 2
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A Theory Covariance Matrix
Assuming that theory uncertainties are (a) Gaussian and (b) independent from

experimental uncertainties, modify the figure of merit to account for theory errors

χ2 =

Ndat∑
i,j

(Di−Ti)(covexp + covth)
−1
ij (Dj−Tj); (covth)ij =

1

N

N∑
k

∆
(k)
i ∆

(k)
j ; ∆

(k)
i ≡ T

(k)
i −Ti

Problem reduced to estimate the th. cov. matrix, e.g. in terms of nuisance parameters

∆
(k)
i = Ti(µR, µF )− Ti(µR,0, µF,0); vary scales in 1

2
≤ µF

µF,0
, µR
µR,0

≤ 2

DIS 
NC

DIS 
CC

TO
P

DY N
C

DY C
C

SIN
GLET

OP
JET

S

PH
OTO

N
DIJE

T
0.0

0.1

0.2

0.3

0.4

0.5

S ii |D
i|

Square root of diagonal elements of covariance matrices (7 pt), normalised to absolute value of data
Experiment
Theory
Total
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A Theory Covariance Matrix
Assuming that theory uncertainties are (a) Gaussian and (b) independent from

experimental uncertainties, modify the figure of merit to account for theory errors

χ2 =

Ndat∑
i,j

(Di−Ti)(covexp + covth)
−1
ij (Dj−Tj); (covth)ij =

1

N

N∑
k

∆
(k)
i ∆

(k)
j ; ∆

(k)
i ≡ T

(k)
i −Ti

Problem reduced to estimate the th. cov. matrix, e.g. in terms of nuisance parameters

∆
(k)
i = Ti(µR, µF )− Ti(µR,0, µF,0); vary scales in 1

2
≤ µF

µF,0
, µR
µR,0

≤ 2

DIS 
NC

DIS 
CC

DY N
C

DY C
C
TO

P
JET

S
DIJE

T

PH
OTO

N

SIN
GLET

OP

0.3

0.2

0.1

0.0

0.1

0.2

0.3

±
S ii

, 
i

MHOU (7 point)
NNLO-NLO Shift
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Impact on Parton Distributions

10 4 10 3 10 2 10 1

x

0.94

0.96

0.98

1.00

1.02

1.04

1.06
Ra

tio
 to

 N
NL

O-
M

HO
U

 at 100 GeV
NNLO-MHOU
NNLO
NLO-MHOU
NLO

10 4 10 3 10 2 10 1

x

0.94

0.96

0.98

1.00

1.02

1.04

1.06

Ra
tio

 to
 N

NL
O-

M
HO

U

g at 100 GeV

NNLO-MHOU
NNLO
NLO-MHOU
NLO

Faster perturbative convergence when MHOU are incorporated into PDFs
[EPJC79 (2019) 838; ibid. 931; EPJC84 (2024) 517]
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Impact on Uncertainties and Fit Quality

10 4 10 3 10 2 10 1

x

0.000

0.002
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10 4 10 3 10 2 10 1

x

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(R
at

io
 to

 N
NL

O-
M

HO
U)

g at 100 GeV
NNLO-MHOU
NNLO
NLO-MHOU
NLO

Dataset Ndat
NLO NNLO

no MHOU MHOU no MHOU MHOU

DIS NC 2100 1.30 1.22 1.23 1.20
DIS CC 989 0.92 0.87 0.90 0.90
DY NC 736 2.01 1.71 1.20 1.15
DY CC 157 1.48 1.42 1.48 1.37
Top pairs 64 2.08 1.24 1.21 1.43
Single-inclusive jets 356 0.84 0.82 0.96 0.81
Dijets 144 1.52 1.84 2.04 1.71
Prompt photons 53 0.59 0.49 0.75 0.67
Single top 17 0.36 0.35 0.36 0.38

Total 4616 1.34 1.23 1.17 1.13

Overall (rather small) variation of uncertainties. Tensions relieved: improvement in χ2

[EPJC79 (2019) 838; ibid. 931; EPJC84 (2024) 517]
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What Happens at aN3LO?
NLO NNLO aN3LO

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU Ndat no MHOU MHOU

DIS NC 1980 1.30 1.22 2100 1.22 1.20 2100 1.22 1.20
DIS CC 988 0.92 0.87 989 0.90 0.90 989 0.91 0.92
DY NC 667 1.49 1.32 736 1.20 1.15 736 1.17 1.16
DY CC 193 1.31 1.27 157 1.45 1.37 157 1.37 1.36
Top pairs 64 1.90 1.24 64 1.27 1.43 64 1.23 1.41
Single-inclusive jets 356 0.86 0.82 356 0.94 0.81 356 0.84 0.83
Dijets 144 1.55 1.81 144 2.01 1.71 144 1.78 1.67
Prompt photons 53 0.58 0.47 53 0.76 0.67 53 0.72 0.68
Single top 17 0.35 0.34 17 0.36 0.38 17 0.35 0.36

Total 4462 1.24 1.16 4616 1.17 1.13 4616 1.15 1.14

Fit quality improves with perturbative order

Fit quality almost independent from
perturbative order when MHOU are included

Data whose theoretical description is
affected by large scale uncertainties
are deweighted in favour of more

perturbatively stable data

NLO NNLO aN3LO
1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

χ
2 to

t/
N

d
at

Total Dataset

NNPDF4.0 no MHOU

NNPDF4.0 MHOU
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Impact on Inclusive Cross Sections

NLO NNLO N3LO

Perturbative Order (ME)

1.8

1.9
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2.1

σ
(p
p
→

Z
/γ
∗
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`−
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b
]
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√
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Neutral Current Drell Yan (PDF + MHOUs)
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NNPDF4.0 (NNLOpdf)

MSHT20

MSHT20 (NNLOpdf)
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Perturbative Order (ME)
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σ
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H
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)
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)
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b
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√
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Higgs in Vector Boson Fusion (PDF + MHOUs)
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NNPDF4.0 (NNLOpdf)

MSHT20

MSHT20 (NNLOpdf)

Effect of using aN3LO PDFs instead of NNLO PDFs in N3LO predictions is small

Good consistency between NNPDF4.0 [EPJC84 (2024) 659] and MSHT20 [EPJC83 (2023) 185]

Emanuele R. Nocera (UNITO) Parton Distribution Functions 28 August 2024 23 / 64



2.1.3 The photon PDF
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Beyond QCD
So far we have considered only the expansion in αs

But there exist QED and electroweak corrections to partonic cross sections

Because α(MZ) ∼ αs(MZ)/10 we expect NLO EW corrns ∼ NNLO QCD corrns

[Slide by courtesy of M. Ubiali]

Let us restrict ourselves to QED corrections
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How should we incorporate QED in our framework?
Define a photon PDF and include it in DGLAP

Expand the solution in αs, α and αsα

Determine the photon PDF (from data?)

Emanuele R. Nocera (UNITO) Parton Distribution Functions 28 August 2024 26 / 64



The LuxQED photon PDF

LUXQED [PRL 117 (2016) 242002]

View the ep → e+X process as an electron
scattering off the photon field of the proton

Consider a BSM process, e.g. production of
a heavy supersymmetric lepton L in ep

collision, write the cross section in terms of
structure functions and of fγ , and equate

the two to obtain fγ

Iterate a QCD fit including fγ in DGLAP and in the momentum sum rule
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Implications for PDFs and LHC processes

Fit quality unaltered: χ2/Ndat = 0.17

Small (0.5%) momentum shift from g to γ

Small (1%) suppression of the gluon PDF

1-2% suppression in ggH cross section
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2.2 Methodology
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Why is the methodology important?

circa 1995: small-x rise of HERA F p
2 and CDF jet

discrepancy

The methodology is crucial if we aim at percent-level accurate PDFs
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Accuracy vs precision or bias vs variance
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What are the ingredients of a fitting methodology?

parametrisation

polynomials/neural network(s)
is there a bias due to the parametrisation?

optimisation

(adaptive) gradient descent
is the parameter space explored efficiently?

uncertainty representation

Hessian/bootstrap of experimental uncertainties
what is the statistical meaning of uncertainties?

validation

closure tests (what happens if I know in advance the underlying law that I am fitting?)
are interpolation and extrapolation uncertainties statistically faithful?

benchmark

PDF4LHC working group
are PDFs obtained independently by various groups equivalent?
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2.2.1 Parametrisation
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Parametrisation: general features

Problem projected onto the finite-dimensional space of parameters

Choose a parametrisation at an initial scale Q2
0

for each independent parton i (or a combination of them)

xfi(z,Q
2
0) = Ai x

ai (1− x)bi Fi(x, {cfi})

small x

xfi(x,Q
2
0)

x→0−−−→ xai

Fi(x,{cfi})
x→0−−−→
x→1

finite

−−−−−−−−−−−−−−−→
interpolation in between

large x

xfi(x,Q
2
0)

x→1−−−→ (1− x)bi

The problem is reduced to the determination of the finite set of parameters {cfi}

The interpolating function Fi(x, {cfi}) should be sufficiently

general (the range of PDF behaviours in the space of functions should not be limited)

smooth (PDFs are implicitly assumed ot be smooth functions)

flexible (it should be able to adapt to a variety of data and processes)

to describe the data with minimal bias
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Parametrisation: two alternative choices
1 Polynomial (Bernstein, Chebyschev) parametrisation, e.g.

Fi = 1 +
n∑

i=1

aiT
Ch
i (y(x)) y = 1− 2

√
x

in terms of a (relatively) small set of parameters (O(30) per PDF set)

{a} = {ai, bi, γi, δi}

⇒ smooth behavior (a desirable feature for a PDF)
⇒ potential source of bias if the parametrisation is too rigid

2 Redundant parametrisation, e.g.

a neural network

in terms of a huge set of parameters (O(200) per PDF set)

{a} = {ω(L−1),fi
ij , θ

(L),fi
i }

⇒ potentially non-smooth
⇒ bias due to the parametrisation reduced as much as possible
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Parametrisation: what a neural network exactly is?

A convenient functional form providing a flexible parametrization
used as a generator of random functions in the PDF space

EXAMPLE: MULTY-LAYER FEED-FORWARD PERCEPTRON

ξ
(l)
i = g

(
nl−1∑

j

ω
(l−1)
ij ξ

(l−1)
j − θ

(l)
i

)

g(y) =
1

1 + e−y

made of neurons grouped into layers (define the architecture)

each neuron receives input from neurons in the preceding layer (feed-forward NN)

activation ξ
(l)
i determined by a set of parameters (weights and thresholds)

activation determined according to a non-linear function (except the last layer)
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Parametrisation: what a neural network exactly is?

EXAMPLE: THE SIMPLEST 1-2-1 MULTI-LAYER FEED-FORWARD PERCEPTRON

z f(z)ξ
(1)
1

ξ
(2)
1

ξ
(2)
2

ξ
(3)
1

θ
(2)
1

θ
(2)
2

θ
(3)
1

ω
(1)
11

ω
(1)
21 ω

(2)
12

ω
(2)
11

f(z) ≡ ξ
(3)
1 =

{
1 + exp

[
θ
(3)
1 − ω

(2)
11

1 + eθ
(2)
1 −xω

(1)
11

− ω
(2)
12

1 + eθ
(2)
2 −xω

(1)
21

]}−1

Recall: ξ
(l)
i = g

nl−1∑
j

ω
(l−1)
ij ξ

(l−1)
j − θ

(l)
i

 ; g(z) =
1

1 + e−z
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Parametrisation: standard vs redundant

HERA-LHC 2009 PDF benchmark

simple parametrization redundant parametrization (NN)
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2.2.2 Optimisation
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Fit quality
1 Define the fit quality (the χ2 function)

χ2 =

Ndat∑
i,j

(Ti[{a}]−Di)
(
cov−1)

ij
(Tj [{a}]−Dj)

with the experimental covariance matrix

(cov)ij = δijs
2
i +

(
Nc∑
α

σ
(c)
i,ασ

(c)
j,α +

NL∑
α

σ
(L)
i,α σ

(L)
j,α

)
DiDj

si are Ndat uncorrelated uncertainties (statistic + uncorrealted systematic ucnertainties)

σ
(c)
i,α are Ndat ×Nc additive correlated uncertainties

σ
(L)
i,α are Ndat ×NL multiplicative uncertainties

2 Find the best-fit configuration of parameters {a0} which minimise the χ2

3 Treat conveniently

▶ uncorrelated/correlated uncertainties

need not to overestimate uncertainties and to let the χ2 be faithful

▶ additive/multiplicative uncertainties

need to avoid the D’Agostini bias
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Parameter optimisation: general framework

Optimisation usually performed by means of simple gradient descent:
compute and minimise the gradient of the fit quality with respect to the fit parameters

∂χ2

∂ai
, for i = 1, . . . , Npar

Optimisation should minimise the noise in the χ2 driven by noisy experimental data

Additional complications in case of a redundant parametrisation (huge parameter space)

1 need to explore the parameter space as uniformly as possible
(in order to avoid stopping the fit in a local minimum)

2 need for a computationally efficient minimisation
(non-trivial relationship between FFs and observables via convolution)

3 need to define a criterion for minimisation stopping
(avoid learning statistical fluctuations of the data)

Alternative algorithms:
genetic algorithms, adaptive algorithms, . . .

Emanuele R. Nocera (UNITO) Parton Distribution Functions 28 August 2024 41 / 64



Optimisation: training and validation

χ2 =

Ndat∑
i,j

(Ti[{a}]−Di)
(
cov−1)

ij
(Tj [{a}]−Dj)

(cov)ij = δijs
2
i +

(
Nc∑
α

σ
(c)
i,ασ

(c)
j,α +

NL∑
α

σ
(L)
i,α σ

(L)
j,α

)
DiDj
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Optimisation: stopping criterion
Divide the data into two subsets (training & validation)

Train the NN on the training subset and compute χ2 for each subset

Stop when the training loss reaches the absolute minimum

The best fit does not coincide with the absolute minimum of the χ2
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Hypertoprimisation: fitting the methodology

Compare to a Test Set (new set of data previously not used at all)

Who picks the Test Set? Automatic generalisation based on K foldings

Divide the data into n representative sets, fit n− 1 sets and use the n-th set as test set

Hyperoptimise on mean and standard deviation of χ2
test,i, i = 1 . . . n
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Hyperoptimisation: K-folding

Compare to a Test Set (new set of data previously not used at all)

Who picks the Test Set? Automatic generalisation based on K foldings

Divide the data into n representative sets, fit n− 1 sets and use the n-th set as test set

Hyperoptimise on mean and standard deviation of χ2
test,i, i = 1 . . . n
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Hyperparameters

Emanuele R. Nocera (UNITO) Parton Distribution Functions 28 August 2024 46 / 64



2.2.3 Uncertainty representation
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The Hessian method: general strategy

1 Expand the χ2 about its global minimum at first (nontrivial) order

χ2{a} ≈ χ2{a0}+ δaiHijδa
j , Hij =

1

2

∂2χ2{a}
∂ai∂aj

∣∣∣∣
{a}={a0}

2 Assume linear error propagation for any observable O depending on {a}

⟨O{a}⟩ ≈ O{a0}+ ai
∂O{a}
∂ai

∣∣∣∣
{a}={a0}

σO{a} ≈ σij
∂O{a}
∂ai

∂O{a}
∂aj

∣∣∣∣
{a}={a0}

3 Determine σij from Hij from maximum likelihood (under Gaussian hypothesis)

σ−1
ij =

∂2χ2{a}
∂ai∂aj

∣∣∣∣
{a}={a0}

= Hij

4 A C.L. about the best fit is obtained as the volume (in parameter space) about
χ2{a0} that corresponds to a fixed increase of the χ2; for Gaussian uncertainties:

68% C.L. ⇐⇒ ∆χ2 = χ2{a} − χ2{a0} = 1
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The Hessian method: some remarks

1 Compact representation and computation of observables and their uncertainties

⟨O[f(x,Q2)]⟩ = O[f0(x,Q
2)]

σO[f(x,Q2)] =
1

2

Npar∑
i=1

(
O[fi(x,Q

2)]−O[f0(x,Q
2)]
)21/2

2 Parameters can always be adjusted so that all eigenvalues of Hij are equal to one
(diagonalise Hij and rescale the eigenvectors by their eigenvalues)

δaiHijδaj =

Npar∑
i=1

[
a′
i(ai)

]2 ⇐⇒ σO{a′} =
∣∣∇′O{a′}

∣∣
The total contribution to the uncertainty due to two different sources
(possibly correlated) is obtained by simply adding them in quadrature

3 Any rotation in the space of parameters preserves the gradient
(one can diagonalise a chosen observable without spoiling the result)

4 Unmanageable Hessian matrix if the numer of parameters is huge
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The Hessian method: limitations
Uncertainties obtained with ∆χ2 = 1 might be unrealistically small

(inadequacy of the linear approximation)

uncertainties tuned to the distribution of deviations from best-fits for single experiments

for each eigenvector in parameter space

determine the CL for the distribution of best-fits of each experiment

rescale to the ∆χ2 = T interval such that correct confidence intervals are reproduced

no statistically rigorous interpretation of T (tolerance)
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The Monte Carlo method: general strategy

1 Generate (art) replicas of (exp) data according to the distribution

O(art)(k)
i = O(exp)

i + r
(k)
i σOi , i = 1, . . . Ndat , k = 1, . . . , Nrep

where r
(k)
i are (Gaussianly distributed) random numbers for each k-th replica

(r
(k)
i can be generated with any distribution, not neccesarily Gaussian)

2 Perform a fit for each replica k = 1, . . . , Nrep

3 Compact computation of observables and their uncertainties
(PDF replicas are equally probable members of a statistical ensemble)

⟨O[f(x,Q2)]⟩ = 1

Nrep

Nrep∑
k=1

O[f (k)(x,Q2)]

σO[f(x,Q2)] =

 1

Nrep − 1

Nrep∑
k=1

(
O[f (k)(x,Q2)]− ⟨O[f(x,Q2)]⟩

)21/2

⇒ no need to rely on linear approximation
⇒ computational expensive: need to perform Nrep fits instead of one
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The Monte Carlo method: determining the sample size

Require that the average over the replicas reproduces the central value
of the original experimental data to a desired accuracy
(the standard deviation reproduces the error and so on)

Experimental

0.4 0.2 0 0.2 0.4 0.6 0.8 1

A
rt
if
ic
ia
l

0.4

0.2

0

0.2

0.4

0.6

0.8

1

=10repN

=100repN

=1000repN

Mean values

Experimental

3
10

2
10

1
10 1

A
rt
if
ic
ia
l

3
10

210

110

1

=10repN

=100repN

=1000repN

Errors

Accuracy of few % requires ∼ 100 replicas
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2.2.4 Validation
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Accuracy vs precision or bias vs variance
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Closure tests: general idea [JHEP 1504 (2015) 040]

Validation and optimisation of the fitting strategy with known underlying physical law

theory

e.g. perturbative order

underlying true law

e.g. PDFs from MSHT20

fitting methodology

e.g. minimization algorithm

generate a set
of pseudodata

perform a fit
to pseudodata

is the underlying
law reproduced?

is the χ2 value
consistent?

ready to fit real data

yes

no no

input settings

validation & optimization

Full control of procedural uncertainties
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Closure Tests: Levels

Level 0 Level 1 Level 2

no fluctuations Gaussian fluctuation Monte Carlo replicas

interpolation uncertainty fuctional uncertainty data uncertainty
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Closure tests at work
Data region: closure tests

Fit PDFs to pseudodata generated
assuming a known underlying law

Define bias and variance
bias difference of central prediction and truth

variance uncertainty of replica predictions

If PDF uncertainty faithful, then
E[bias] = variance

25 fits, 40 replicas each

[EPJC77 (2017) 663; EPJC82 (2022) 330]
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Future tests
Extrapolation regions: future test

Test PDF uncertainties on data sets
not included in a given PDF fit

that cover unseen kinematic regions

Data set NNPDF4.0 pre-LHC pre-HERA

pre-HERA 1.09 1.01 0.90
pre-LHC 1.21 1.20 23.1
NNPDF4.0 1.29 3.30 23.1

Only exp. cov. matrix

[Acta Phys.Polon. B52 (2021) 243]
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Future tests
Extrapolation regions: future test

Test PDF uncertainties on data sets
not included in a given PDF fit

that cover unseen kinematic regions

Data set NNPDF4.0 pre-LHC pre-HERA

pre-HERA 0.86
pre-LHC 1.17 1.22
NNPDF4.0 1.12 1.30 1.38

Exp+PDF cov. matrix

[Acta Phys.Polon. B52 (2021) 243]
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2.2.5 Benchmarks
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Overview of current PDF determinations
NNPDF4.0 MSHT20 CT18 HERAPDF2.0 CJ22 ABMP16

Fixed-target DIS 2� 2� 2� 4 2� 2�
JLAB 4 4 4 4 2� 4

HERA I+II 2� 2� 2� 2� 2� 2�
HERA jets 2� 4 4 2� 4 4

Fixed target DY 2� 2� 2� 4 2� 2�
Tevatron W , Z 2� 2� 2� 4 2� 2�
LHC vector boson 2� 2� 2� 4 2� 2�

LHC W + c Z + c 2� 4 4 4 4 4
Tevatron jets 2� 2� 2� 4 2� 4
LHC jets 2� 2� 2� 4 4 4
LHC top 2� 2� 4 4 4 2�

LHC single t 2� 4 4 4 4 4
LHC prompt γ 2� 4 4 4 4 4

statistical
Monte Carlo

Hessian Hessian Hessian Hessian Hessian

treatment ∆χ2 dynamical ∆χ2 dynamical ∆χ2 = 1 ∆χ2 = 1.645 ∆χ2 = 1

parametrisation Neural Network Chebyschev pol. Bernstein pol. polynomial polynomial polynomial

HQ scheme FONLL TR′ ACOT-χ TR′ ACOT-χ FFN

accuracy aN3LO aN3LO NNLO NNLO NLO NNLO

latest update
EPJC82 (2022) EPJC81 (2021) PRD103 (2021) EPJC82 (2022) PRD107 (2023) PRD96 (2017)

428 341 014013 243 113005 014011

All PDF sets are available as (x,Q2) interpolation grids through the LHAPDF library
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Comparing PDF sets

[Acta Phys.Polon.B 53 (2022) 12]
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Making predictions with PDFs

[Acta Phys.Polon.B 53 (2022) 12]
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2.3 Summary of Lecture 2
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Summary of Lecture 2

1 PDF accuracy can be improved by improving the theory
−→ proper treatment of heavy quarks is mandatory to describe DIS data

−→ evidence for intrinsic charm in the proton

−→ MHOUs can be estimated by scale variations

−→ inclusion of MHOUs stabilises fit quality

−→ electroweak corrections modify DGLAP equations

−→ the photon PDF is determined very precisely

−→ inclusion of photon PDFs impacts the gluon PDF

2 Devising the methodology is essential to minimise bias and variance
−→ bias is a measure of accuracy, variance is a measure of precision

−→ choices of parametrisation (polynomial vs neural network)

−→ choices of uncertainty representation (Hessian vs Monte Carlo)

−→ are all sources of bias and variance

−→ closure tests are a way to validate PDF uncertainites in the seen region

−→ future tests validate the generalisation power in the unseen region

Thank you
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