Parton Distribution Functions

2024 CTEQ Summer School on QCD and Electroweak Phenomenology

Emanuele R. Nocera Università degli Studi di Torino and INFN, Torino

27-28 August 2024

Table of contents

Lecture 1. What are PDFs and how we can determine them from data

- why Parton Distribution Functions?
- how are PDFs related to Physical Observables?
- how can we determine PDFs?
- which data constrain which PDFs and how?

Lecture 2. Theoretical and methodological accuracy in PDF determination

- higher-order corrections and theory uncertainties
- heavy flavour schemes and intrinsic charm
- the photon PDF and electroweak corrections
- parametrisation, optimisation, uncertainty representation
- validation of uncertainites and benchmarks

DISCLAIMER

These lectures contain a personal selection of topics and are certainly not exhaustive

Bibliography

Textbooks on perturbative QCD

- ▶ J. Campbell, J. Huston, F. Krauss, The Black Book of QCD, Oxford (2018)
- ▶ J.C. Collins, Foundations of perturbative QCD, Cambridge (2011)
- ▶ R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics, Cambridge (1996)
- 2 Reviews on Parton Distribution Functions
 - K. Kovarik and P.M. Nadolsky, Rev.Mod.Phys. 92 (2020) 045003
 - J.J. Ethier and E.R. Nocera, Ann.Rev.Nucl.Part.Sci. 70 (2020) 43
 - ▶ J. Gao, L. Harland-Lang and J. Rojo, Phys.Rept. 742 (2018) 1
 - S. Forte and G. Watt, Ann.Rev.Nucl.Part.Sci. 63 (2013) 291
 - ▶ P. Jimenez-Delgado, W. Melnitchouk and J. F. Owens, J. Phys. G40 (2013) 093102
 - E.C. Aschenauer, R.S. Thorne, R. Yoshida (rev.), Structure Functions, PDG, ch. 8
- Specific topics not addressed above
 - more journal references as we proceed through these lectures

DISCLAIMER

These lectures will focus on collinear leading-twist Parton Distribution Functions

Transverse-momentum-dependent distributions will not be covered here

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

Parton Distribution Functions Lecture 1: What are Parton Distribution Functions and how we can determine them from experimental data

Outline

- 1.1 Why Parton Distribution Functions? the LHC as a laboratory for precision QCD and discovery
- 1.2 How are PDFs related to Physical Observables? factorisation, evolution properties of splitting functions, theoretical constraints
- 1.3 How can we determine PDFs? how to formulate the problem and how to solve it
- 1.4 Which data constrain which PDFs and how? overview of experimental data: from HERA to the LHC which constraints different scattering processes put on PDFs

I will focus on the phenomenological determination of PDFs I will not talk about Lattice QCD nor of models of nucleon structure See also lectures by D. Soper and A. Cooper-Sarkar

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

1.1 Why Parton Distribution Functions?

First Collisions of LHC Run III

Image credit: ATLAS collaboration

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

27 August 2024

7 / 50

A Laboratory for Quantum Chromodynamics

Parton Distribution Functions

PDFs express the likelihood of a quark or gluon (partons) to enter a collision That is, $x \times PDFs$ are momentum fraction distributions for each parton Dependence on x is non-perturbative (fit); dependence on Q^2 is perturbative (DGLAP)

NNPDF4.0 NNLO Q= 3.2 GeV

Plot from the PDG Review of Particle Physics

Parton Distribution Functions

PDFs express the likelihood of a quark or gluon (partons) to enter a collision That is, $x \times PDFs$ are momentum fraction distributions for each parton Dependence on x is non-perturbative (fit); dependence on Q^2 is perturbative (DGLAP)

NNPDF4.0 NNLO Q = 100.0 GeV

Plot from the PDG Review of Particle Physics

LHC, QCD and PDFs

The LHC is a Proton Collider – Any interaction contains a strong interaction

Quantum Chromodynamics (QCD) is the main actor

Within QCD, Parton Distribution Functions (PDFs) play a leading role

Plot by courtesy of G. Salam

LHC, QCD and PDFs

The LHC is a Proton Collider – Any interaction contains a strong interaction

Quantum Chromodynamics (QCD) is the main actor

Within QCD, Parton Distribution Functions (PDFs) play a leading role

Plot by courtesy of G. Salam

Physics at the LHC as Precision Physics

Plot from ATLAS Collaboration web page

PDFs as a Tool: Making Predictions with PDFs

PDF uncertainty is often the dominant source of uncertainty in LHC cross sections

Higgs boson characterisation

Determination of SM parameters, such as the mass of the \boldsymbol{W} boson

Searches for beyond SM physics at large invariant mass of the final state

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

27 August 2024

1.2 How are PDFs related to Physical Observables?

Factorisation of Physical Observables

I Factorisation theorems apply to sufficiently inclusive scattering processes

short-distance interaction partonic hard interaction process-specific kernel

 $\xrightarrow{\text{factorisation scheme}}_{\text{scale }\mu}$

long-distance interaction nucleon structure universal PDFs

2 Physical observables can be written as convolutions of matrix elements and PDFs

$$F_{I}(x,\mu^{2}) = \sum_{i} \int_{x}^{1} \frac{dz}{z} C_{Ii}(z,\alpha_{s}(\mu^{2})) f_{i}\left(\frac{x}{z},\mu^{2}\right) \qquad \text{ONE HADRON}$$

$$\sigma(\tau,\mu^{2},\mathbf{k}) = \sum_{ij} \int_{\tau}^{1} \frac{dz}{z} \hat{\sigma}_{ij}\left(\frac{\tau}{z},\alpha_{s}(\mu^{2}),\mathbf{k}\right) \mathcal{L}_{ij}(z,\mu^{2}) \qquad \text{TWO HADRONS}$$

$$\mathcal{L}_{ij}(z,\mu^{2}) = (f_{i}^{h_{1}} \otimes f_{j}^{h_{2}})(z,\mu^{2})$$

$$f \otimes g = \int_{x}^{1} \frac{dz}{z} f\left(\frac{x}{z}\right) g(z)$$

() The matrix elements C_{If} and $\hat{\sigma}_{ij}$ can be computed perturbatively

$$C_{Ii}(y,\alpha_s) = \sum_{k=0} a_s^k C_{Ii}^{(k)}(y) \qquad \hat{\sigma}_{ij}(y,\alpha_s) = \sum_{k=0} a_s^k \hat{\sigma}_{ij}^{(k)}(y) \qquad a_s = \alpha_s / (4\pi)$$

() Because of factorisation, all of these quantities depend on μ^2 ; usually $Q^2 = \mu^2$

Factorisation Kinematics
ONE HADRON

$$F_{I}(x, \mu^{2}) = \sum_{i=q,\bar{q},g} \int_{0}^{1} dz \int_{x}^{1} dy \delta(x - yz) C_{Ii}(z, \mu^{2}) f_{i}(y, \mu^{2})$$

$$scale: Q^{2} = -q^{2}$$

$$scaling variable (hadronic): x = x_{B} = \frac{Q^{2}}{2p \cdot q}$$

$$scaling variable (partonic): z = \frac{Q^{2}}{2p \cdot q}$$

$$incoming parton momentum fraction: y \to p = yP$$
P: proton momentum q: gauge boson momentum p parton momentum

$$TWO \text{ HADRONS}$$

$$\sigma(\tau, \mu^{2}, \mathbf{k}) = \sum_{i,j=q,\bar{q},\bar{q},g} \int_{0}^{1} dz \int_{\tau}^{1} dx_{1} dx_{2} \delta(\tau - x_{1}x_{2}z) \hat{\sigma}_{ij}(\tau/z, \mu^{2}, \mathbf{k}) f_{i}^{h1}(x_{1}, \mu^{2}) f_{j}^{h2}(x_{2}, \mu^{2})$$

$$scale: M^{2}$$

$$scaling variable (hadronic): \tau = \frac{M^{2}}{s} \qquad s = (P_{1} + P_{2})^{2}$$

$$scaling variable (partonic): z = \frac{M^{2}}{s} \qquad \hat{s} = (p_{1} + p_{2})^{2}$$

$$incoming parton momentum fractions: x_{1,2} \to p_{1,2} = x_{1,2}P_{1,2}$$

$$P_{1,2}: \text{ proton momenta} \qquad M^{2}: \text{ final state mass} \qquad p_{1,2} \text{ parton momenta}$$

Theoretical constraints

Momentum sum rule (momentum conservation)

$$\int_{0}^{1} dx x \left[\sum_{q=1}^{n_{f}} \left(f_{q}(x,Q^{2}) + f_{\bar{q}}(x,Q^{2}) \right) + f_{g}(x,Q^{2}) \right] = 1$$

Valence sum rules (baryon number conservation)

$$\begin{split} \int_{0}^{1} dx \left[f_{u}(x,Q^{2}) - f_{\bar{u}}(x,Q^{2}) \right] &= 2 \\ \int_{0}^{1} dx \left[f_{d}(x,Q^{2}) - f_{\bar{d}}(x,Q^{2}) \right] &= 1 \\ \int_{0}^{1} dx \left[f_{q}(x,Q^{2}) - f_{\bar{q}}(x,Q^{2}) \right] &= 0 \qquad q = s,c,b,t \end{split}$$

Isospin symmetry of the strong interaction

$$f^p_u = f^n_d \qquad f^p_{\bar{u}} = f^n_{\bar{d}}$$

Positivity of cross sections [PRD 105 (2022) 076010; EPJ C84 (2024) 335]

 \rightarrow PDFs should be positive-definite at LO

- \rightarrow beyond LO, PDFs ought not be positive, however they are positive above for Q^2 large
- Integrability of non-singlet PDFs
 - \rightarrow follows from operator product expansion

PDF evolution: DGLAP equations

() A set of $(2n_f + 1)$ integro-differential equations, n_f is the number of active partons

$$\frac{\partial}{\partial \ln \mu^2} f_i(x,\mu^2) = \sum_j^{n_f} \int_x^1 \frac{dz}{z} P_{ji}\left(z,\alpha_s(\mu^2)\right) f_j\left(\frac{x}{z},\mu^2\right)$$

2 They are often written in a convenient PDF basis

$$f_{\pm} = (f_q \pm f_{\bar{q}}) - (f_{q'} \pm f_{\bar{q}'}) \qquad f_v = \sum_i^{n_f} (f_q - f_{\bar{q}}) \qquad f_{\Sigma} = \sum_i^{n_f} (f_q + f_{\bar{q}})$$
$$\frac{\partial}{\partial \ln \mu^2} f_{\pm,v}(x,\mu^2) = P^{\pm,v}(x,\mu_F^2) \otimes f_{\pm,v}(x,\mu^2)$$
$$\frac{\partial}{\partial \ln \mu^2} \begin{pmatrix} f_{\Sigma}(x,\mu^2) \\ f_g(x,\mu^2) \end{pmatrix} = \begin{pmatrix} P_{qq} & 2n_f P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_{\Sigma}(x,\mu^2) \\ f_g(x,\mu^2) \end{pmatrix}$$

 \bigcirc The splitting functions P can be computed perturbatively

$$P_{ji}(z, \alpha_s) = \sum_{k=0} a_s^{k+1} P_{ji}^{(k)}(z), \qquad a_s = \alpha_s / (4\pi)$$

$$P_{qq}^{(0)} \longrightarrow P_{gq}^{(0)} \qquad P_{qg}^{(0)} \longrightarrow P_{qg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}^{(0)} \qquad P_{gg}^{(0)} \longrightarrow P_{gg}$$

Emanuele R. Nocera (UNITO)

Splitting Functions and Anomalous Dimensions Perform the Mellin transform $\gamma_{ji}(N, \alpha_s(\mu^2)) \equiv \int_0^1 dx x^{N-1} P_{ji}(x, \alpha_s(\mu^2))$

$$\begin{aligned} \frac{\partial}{\partial \ln \mu^2} f_{\pm,v}(N,\mu^2) &= \gamma_{\pm,v}(N,\mu_F^2) \cdot f_{\pm,v}(N,\mu^2) \\ \frac{\partial}{\partial \ln \mu^2} \begin{pmatrix} f_{\Sigma}(N,\mu^2) \\ f_g(N,\mu^2) \end{pmatrix} = \begin{pmatrix} \gamma_{qq} & 2n_f \gamma_{qg} \\ \gamma_{gq} & \gamma_{gg} \end{pmatrix} \cdot \begin{pmatrix} \Sigma(N,\mu^2) \\ g(N,\mu^2) \end{pmatrix} \end{aligned}$$

How many different anomalous dimensions are there?

LO: $\gamma_{qq} = \gamma_{\pm,v} \rightarrow 4$ independent splitting functions NLO: $\gamma_{qq} \neq \gamma_+ \neq \gamma_- \rightarrow 6$ independent splitting functions NNLO: $\gamma_- \neq \gamma_v \rightarrow 7$ independent splitting functions

Which PDF combinations evolve independently?

LO: f_g , f_{Σ} , and any $2n_f - 1$ linear combinations of f_q and $f_{\bar{q}}$ NLO: f_g , f_{Σ} , any $n_f - 1$ linear combinations of $f_q - f_{\bar{q}}$, and of $f_q + f_{\bar{q}}$ NNLO: as NLO, and $f_V = \sum_q^{n_f} (f_q - f_{\bar{q}})$

A common choice

$$\begin{split} f_g, \ f_{\Sigma} &= \sum_q^{n_f} (f_q + f_{\bar{q}}), \ f_V = \sum_q^{n_f} (f_q - f_{\bar{q}}) \\ \text{iterative NS combinations of } f_{q^+} &= f_q + f_{\bar{q}} \text{ and of } f_{q^-} = f_q - f_{\bar{q}} \\ T_3 &= f_{u^+} - f_{d^+} \qquad T_8 = f_{u^+} + f_{d^+} - 2f_{s^+} \qquad T_{15} = f_{u^+} + f_{d^+} + f_{s^+} - 3f_{c^+} \ \dots \\ V_3 &= f_{u^-} - f_{d^-} \qquad V_8 = f_{u^-} + f_{d^-} - 2f_{s^-} \qquad V_{15} = f_{u^-} + f_{d^-} + f_{s^-} - 3f_{c^-} \ \dots \end{split}$$

Emanuele R. Nocera (UNITO)

Anomalous dimensions: perturbative accuracy NLO (1977) NLO (1980)

[NPB 126 (1977) 298]

$$\begin{split} \gamma_{fg}^{(0)}(N) &= 0\\ \gamma_{fg}^{(0)}(N) &= 2n_f \left(\mathbf{N}_- + 4\mathbf{N}_+ - 2\mathbf{N}_{+2} - 3\right)S_1\\ \gamma_{Eq}^{(0)}(N) &= 2C_F \left(2\mathbf{N}_{-2} - 4\mathbf{N}_- - \mathbf{N}_+ + 3\right)S_1\\ \gamma_{Eq}^{(0)}(N) &= C_A \left(4(\mathbf{N}_{-2} - 2\mathbf{N}_- - 2\mathbf{N}_+ + \mathbf{N}_{+2} + 3)S_1 - \frac{11}{3}\right) + \frac{2}{3}n_f \end{split}$$

NPB 175 (1980) 27; PLB 97 (1980) 437

Numerical solution (LO, NLO , NNLO and aN³LO) of DGLAP implemented in open-source software: EKO [EPJ C82 (2022) 976] and APFEL++ [CPC 185 (2014) 1647]

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

Anomalous dimensions: perturbative accuracy NNLO (2004)

NPB 691 (2004) 129

$$\begin{split} & \sqrt{g}(2)(0) = (\log - g_{10} \int_{-1}^{1} (\log - g_{10} - N_{11} + N_{12} - m_{11} + m_{12} + m$$

$$\begin{split} + \frac{1}{3} \hat{a}_1 + (\mathbf{n} - \mathbf{N}_2) \Big[\hat{a}_1 - \hat{a}_2 + \hat{a}_1 + \hat{a}_2 + \hat{a}_1 + \hat{a}_1$$

$$\begin{split} & \frac{d_{12}^{2}(0)}{d_{12}^{2}} = (b_{12}^{-1}c_{13}^{-1}c_{13}^{-1}c_{23}$$

 $+2S_{2,-3}+\frac{83}{12}S_{2,1,1}+\frac{3}{2}S_{2,1,1,1}-3S_{2,1,2}-\frac{41}{4}S_{2,2}+S_{2,2,1}-\frac{5}{2}S_{2,3}-\frac{55}{48}S_{3}+3S_{3,-2}-\frac{143}{12}S_{3,1}-\frac{143}{12}$ $-2S_{3,1,1} + \frac{49}{4}S_4 + 4S_{4,1} - 2S_5 + (1 - N_+) \left[\frac{145}{2}S_1\zeta_3 - \frac{3571}{64}S_1 + 2S_{1,-3} - \frac{58}{3}S_{1,3} - \frac{25}{9}S_{1,1,1} - \frac{125}{9}S_{1,1,1} - \frac{125}{9}S_$ $+\frac{23}{2}S_{1,-2,1}+\frac{335}{216}S_{1,1}-\frac{31}{2}S_{1,1,-2}-\frac{11}{3}S_{1,1,1}-\frac{5}{3}S_{1,1,2}+\frac{245}{77}S_{1,2}+\frac{3}{7}S_{2,1,1,1}+8S_{4,1}-2S_{5,1,2}+\frac{3}{7}S_{2,1,1,1}+S_{4,1}-2S_{5,1,2}+\frac{3}{7}S_{2,1,1,1}+S_{4,1}-2S_{5,1,2}+\frac{3}{7}S_{2,1,2}+\frac{3}{7}S_{2,1,2}+\frac{3}{7}S_{2,1,2}+\frac{3}{7}S_{2,$ $+\frac{1}{2} S_{1,2,1}-\frac{83}{2} S_{1,-2}+27 S_2 \zeta_3-8 S_{2,-3}+\frac{3}{2} S_{2,-2}+8 S_{2,-2,1}-\frac{183}{4} S_4+8 S_{2,1,-2}-\frac{117}{4} S_{2,1,1}-\frac{117}{4} S_{2,1}-\frac{117}{4}$ $-3S_{2,1,2} + \frac{157}{4}S_{2,2} - 3S_{2,2,1} - \frac{9}{8}S_{2,3} - \frac{581}{14}S_3 - S_{3,-2} + \frac{237}{4}S_{3,1} - 8S_{3,1,1} + 8S_{3,2} + \frac{73}{4}S_{2,1}$ $-\frac{4319}{48}S_2\right) + 16C_An_f^2\left(\frac{1}{6}(N_- + 4N_+ - 2N_{+2} - 3)\left[\frac{175}{27}S_1 - 2S_{1,-3} + \frac{7}{3}S_{1,-2} - \frac{7}{9}S_{1,1} + \frac{4}{3}S_3\right]\right)$ $+\frac{7}{3}S_{1,1,1}-S_{1,1,1,1}+S_{1,1,2}-S_{1,2,1}-S_{1,3}+\frac{229}{18}S_2\Big]+\frac{1}{6}(N_{-}-1)\Big[S_{1,-2}-\frac{4}{3}S_{1,1}+S_{1,1,1}\Big]$ $-\frac{53}{162}(\mathbf{N}_{-2}-1)S_1 - (\mathbf{N}_{-}-\mathbf{N}_{+})\left[\frac{149}{648}S_1 + \frac{7}{4}S_2 - \frac{2}{9}S_3 - \frac{1}{3}S_4\right] - (1-\mathbf{N}_{+})\left[\frac{473}{648}S_1 - \frac{169}{36}S_2 - \frac{169}{36}S_2\right]$ $+\frac{1}{6}S_{2,1}-\frac{43}{18}S_{3}+\frac{5}{3}S_{4}\right)+16C_{A}^{2}n_{f}\left((N_{-}+4N_{+}-2N_{+2}-3)\left[\frac{3220}{27}S_{1}-\frac{3}{2}S_{1,-4}+\frac{277}{12}S_{1,-2}-\frac{3}{2}S_{1,-4}-\frac{277}{12}S_{1,-2}-\frac{3}{2}S_{1,-4}-\frac{3}{2}S_{1$ $-\frac{31}{2}S_{1}\zeta_{3}+\frac{61}{6}S_{1,-3}+2S_{1,-3,1}+3S_{1,-2,-2}-\frac{8}{3}S_{1,-2,1}+2S_{1,-2,1,1}-2S_{1,1,-2,1}+6S_{1,1,1,-2}-2S_{1,1,-2,1}+2S_{$ $-\frac{95}{54}S_{1,1}-3S_{1,1}\zeta_3+2S_{1,1,-3}+\frac{20}{3}S_{1,1,-2}+\frac{47}{8}S_{1,1,1}+\frac{4}{3}S_{1,1,1,1}+2S_{1,1,1,1,-}-S_{1,1,3}+\frac{37}{6}S_{1,3}$ $+ 4 S_{1,1,1,2} + \frac{21}{4} S_{1,1,2} + 2 S_{1,1,2,1} + \frac{69}{8} S_{1,2} - S_{1,2,-2} + \frac{23}{12} S_{1,2,1} - 3 S_{4,1} + 2 S_{2,3} - \frac{5}{2} S_{1,4} + 95 S_{2,3} - \frac{5}{2} S_{1,4} - \frac{5}{2} S_$ $-3S_{2}\zeta_{3}-S_{2,-3}+\frac{25}{2}S_{2,-2}+2S_{2,-2,1}-\frac{155}{72}S_{2,1}+\frac{53}{6}S_{2,1,1}+3S_{1,3,1}-\frac{5}{12}S_{2,2}+\frac{31}{12}S_{3,1}-3S_{4}$ $+\frac{2561}{72}S_{3}-2S_{1,2,2}\left[+(\mathbf{N_{-2}}-1)\left[4S_{1}\zeta_{3}-\frac{2351}{108}S_{1}-\frac{8}{3}S_{1,-3}-\frac{4}{3}S_{1,1,2}-\frac{52}{9}S_{1,-2}+\frac{4}{3}S_{1,-2,1}\right]\right]$ $+\frac{161}{36}S_{1,1}-\frac{4}{3}S_{1,1,-2}-\frac{10}{9}S_{1,1,1}+\frac{2}{3}S_{1,1,1,1}-\frac{3}{2}S_{1,2}+\frac{56}{27}S_{2}-\frac{20}{9}S_{2,1}-2S_{1,3}-\frac{2}{3}S_{2,1,1}]$ $-\left(\mathbf{N}_{-}-1\right) \boldsymbol{S}_{1,2,1}+\left(\mathbf{N}_{-}-\mathbf{N}_{+}\right) \left[22 \boldsymbol{S}_{1} \boldsymbol{\zeta}_{3}-\frac{1759}{24} \boldsymbol{S}_{1}-\frac{13}{6} \boldsymbol{S}_{1,-3}-\frac{799}{36} \boldsymbol{S}_{1,-2}-\frac{8}{3} \boldsymbol{S}_{1,-2,1}-\frac{21}{2} \boldsymbol{S}_{1,3}\right]$ $-\frac{37}{3}S_{1,1,-2}-\frac{425}{72}S_{1,1,1}-\frac{7}{12}S_{1,1,1,1}-\frac{35}{6}S_{1,1,2}-\frac{217}{74}S_{1,2}-\frac{1385}{18}S_2+\frac{593}{36}S_{1,1}-\frac{49}{6}S_{2,1,1}$ $+\frac{5}{2} S_{2,-3}-8 S_{2,-2}-\frac{209}{24} S_{2,1}+3 S_{2,1,-2}-S_{2,1,1,1}+2 S_{2,1,2}+\frac{17}{13} S_{2,2}-6 S_2 \zeta_3+\frac{13}{4} S_{2,3}+\frac{9}{4} S_{4,1}$ $-\frac{1363}{72}S_3+\frac{9}{2}S_{3,-2}+\frac{1}{6}S_{3,1}+3S_{3,1,1}+\frac{25}{6}S_4+4S_5\right]+(1-N_+)\Big[\frac{15}{4}S_{2,2}+\frac{1783}{24}S_1-41S_1\zeta_3+\frac{12}{3}S_2+\frac{12}{3}S_1-\frac{12}{3}S_2+\frac{12}{3}S_$ $+\frac{4}{3}S_{1,-3}+\frac{995}{36}S_{1,-2}+\frac{16}{3}S_{1,-2,1}-\frac{2731}{77}S_{1,1}+\frac{62}{3}S_{1,1,-2}+\frac{319}{77}S_{1,1,1}-\frac{7}{12}S_{1,1,1,1}+\frac{49}{6}S_{1,1,2}$ $+\frac{287}{24}S_{1,2}+\frac{79}{4}S_{1,3}+\frac{73141}{216}S_2-248S_2'_{53}+\frac{17}{2}S_{2,-3}+\frac{93}{2}S_{2,-2}-\frac{1567}{72}S_{2,1}-\frac{34}{3}S_4-\frac{15}{4}S_{4,1}$ $+78_{2,1,-2}+\frac{167}{6}8_{2,1,1}-38_{2,1,1,1}+68_{2,1,2}+\frac{53}{4}8_{2,3}+\frac{7385}{72}8_{3}-\frac{7}{2}8_{3,-2}+\frac{47}{4}8_{3,1}+58_{3,1,1}$ $-19S_5$] + $16C_F n_f^2$ (N₋ + 4N₊ - 2N₊₂ - 3) $\left[\frac{2303}{324}S_1 + \frac{7}{54}S_{1,1} - \frac{7}{18}S_{1,1,1} - \frac{1}{6}S_{2,1,1} - S_4\right]$ $+\frac{4}{9} S_{1,2}+\frac{1}{6} S_{1,1,1,1}-\frac{1}{3} S_{1,3}+\frac{35}{18} S_2+\frac{7}{18} S_{2,1}-\frac{11}{9} S_3\Big]-\frac{1}{6} (\mathbf{N}_--1)\Big[S_{1,1,1}+S_{1,2}-S_{2,1}\Big]$ $-(N_{-}-N_{+})\left[\frac{59963}{2592}S_{1}-\frac{7}{18}S_{1,1}-\frac{251}{27}S_{2}+\frac{199}{24}S_{3}-\frac{25}{6}S_{4}+2S_{3}\right]+(1-N_{+})\left[\frac{163}{24}S_{2}+6S_{3}-S_{4}+S_{3}-S_{4}+S_{5}-S_{5}-S_{4}+S_{5}-S$ $+\frac{96277}{2807}S_1-\frac{17}{16}S_{1,1}-\frac{7}{24}S_3-\frac{19}{2}S_4\Big]+\frac{77}{81}(\mathbf{N}_{-2}-1)S_1\Big)+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big[4S_{2,1,-2}-1S_1\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big((\mathbf{N}_{-}-1)\Big]+16C_F^2n_f\Big)$ $+\frac{1}{2} S_{2,2} \Big] + (\mathbf{N}_{-} + 4 \mathbf{N}_{+} - 2 \mathbf{N}_{+2} - 3) \Big[\frac{81}{23} S_{1} - S_{1,-4} + 5 S_{1,-3} - \frac{5}{2} S_{1,-2} + 2 S_{1,-2,-2} + 4 S_{1,1,-3} + 5 S_{1,-3} - \frac{5}{2} S_{1,-2} + 2 S_{1,-2,-2} + 4 S_{1,1,-3} + \frac{5}{2} S_{1,-3} + \frac{5}{2} S_{1,-3}$

aN³LO (2020 - ongoing)

$$\begin{split} &+\frac{\pi}{9} \frac{\pi}{3} x_{1-1} + \delta_{1,1-1} + \frac{4\pi}{9} S_{1,1-1} + S_{1,1,1-1} + S_{1,1,1-1} + S_{1,1,2-1} - \frac{5}{9} S_{1,2-1} + S_{1,2-1} - S_{1,2-1} + \delta_{1,2-1} - \frac{5}{9} S_{1,2-1} + S_{1,2-1} - \frac{5}{9} S_{1,2-1} + S_{1,2-1} - \frac{5}{9} S_{1,2-1} - S_{1,2-1} + S_{1,2-1} - \frac{5}{9} S_{1,2-$$

 $\gamma_{pq}^{(2)}(N) = 16C_A C_F n_f \left((2N_{-2} - 4N_{-} - N_{+} + 3) \left[\frac{967}{144} S_1 - 2S_1 \zeta_3 + \frac{2}{3} S_{1,-3} + \frac{41}{18} S_{1,-2} - \frac{1}{3} S_{1,3} + \frac{1}{3} S_{1,-3} + \frac{1}{3}$ $-\frac{2}{3}S_{1,-2,1}+\frac{251}{108}S_{1,1}-\frac{4}{3}S_{1,1,-2}-\frac{13}{4}S_{1,1,1}+\frac{5}{6}S_{1,1,1,1}-\frac{5}{6}S_{1,1,2}+\frac{10}{9}S_{1,2}-\frac{5}{6}S_{1,2,1}-\frac{151}{108}S_{2,2}$ $-\frac{1}{3}S_{2,-2} + \frac{10}{9}S_{2,1} - \frac{5}{6}S_{2,1,1} + \frac{1}{3}S_{2,2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - 4S_{2,-2} + \frac{28}{9}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{3}S_{2,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - 4S_{2,-2} + \frac{28}{9}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{3}S_{2,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - \frac{1}{18}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{3}S_{2,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - \frac{1}{18}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{3}S_{2,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - \frac{1}{18}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{3}S_{2,-2} \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big] + (\mathbf{N}_{-} - \mathbf{N}_{+}) \Big[\frac{331}{77}S_{1} - \frac{1}{18}S_{1,-2} - \frac{11}{18}S_{1,1,1} + \frac{1}{18}S_{1,-2} - \frac{1}{18}S_{1,-2} + \frac{1$ $+\frac{4}{3}S_{3,1}-\frac{2}{9}S_{2,1}+\frac{53}{54}S_{1,1}-\frac{733}{54}S_2+\frac{4}{3}S_{2,1,1}-\frac{22}{3}S_3\Big]+(1-\mathbf{N}_+)\Big[\frac{10}{3}S_{2,-2}+\frac{1}{12}S_{2,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac{1}{4}S_{1,1}-\frac$ $\frac{3}{17}S_{1,-2} - \frac{137}{144}S_1 + \frac{5}{6}S_{1,2} + \frac{1}{4}S_{1,1,1} + \frac{565}{36}S_2 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{2,1,1} + \frac{35}{12}S_3 - \frac{2}{3}S_{3,1} \Big] - \frac{2}{9} (\mathbf{N}_{-} - \mathbf{N}_{+2}) \Big[S_3 - S_{3,1} + \frac{1}{9}S_{3,1} + \frac{1}{9}S_{3,2} + \frac{1}{9}S_{3,1} + \frac{1}{9}S_{3,2} + \frac{1}{9}S_{3,2}$ $-3S_{2,1} + \frac{131}{4}S_1 + S_{1,-2} - \frac{25}{6}S_{1,1} - S_{1,1,1} + \frac{125}{6}S_2 \Big] - \frac{2}{3}(N_- - 1)S_4 \Big) + 16C_A C_F^{-2} \Big((2N_{-2} - 2N_{-2}) - \frac{1}{3}(N_- - 1)S_4 \Big) + \frac{1}{3}(N_- - 1)S_$ $\begin{array}{c} 4\\ -4\mathbf{N}_{-}-\mathbf{N}_{+}+3)\left[\frac{163}{32}S_{1,-3}\frac{3}{2}S_{1,-4}-\frac{3}{2}S_{1,-1}+\frac{6503}{2}S_{1,-1}-5S_{1,-2,-2}-3S_{1,-2,-1}-4S_{1,1,1,1,1}\right]\\ +S_{1,-2}+2S_{1,-2,1,1}-9S_{1,1}\zeta_{3}-4S_{1,1,-3}+3S_{1,1,-2}+2S_{1,1,-2,1}+5S_{1,1,3}+6S_{1,1,1,-2}+S_{1,1,2,1}\right]$ $+ 3 S_{1,1,1,2} + \frac{35}{3} S_{1,1,1,1} + \frac{2}{9} S_{1,1,1} - \frac{1}{12} S_{1,1,2} - \frac{191}{24} S_{1,2} - 3 S_{1,2,-2} - \frac{41}{12} S_{1,2,1} + 4 S_{1,3} - 4 S_{2,1} - \frac{1}{12} S_{1,2,1} + \frac{1}{12} S_{1,2,1} - \frac{1}{12} S_$ $+ 2 S_{1,2,1,1} - \frac{5}{2} S_{1,4} - \frac{9}{2} S_{2,1,1} + 2 S_{2,1,1,1} + S_{2,1,2} + 3 S_{2,2} + S_{2,2,1} - 2 S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,1} - S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,1} - S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,1} - S_{2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[6 S_{2,1,1} - S_{2,1,2} + S_{2,2,2} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,2} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,2} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,2,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,2,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,2,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,2} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{-} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,1,2} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,1,1} + S_{2,2,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} \right] + (\mathbf{N}_{+} - \mathbf{N}_{+2}) \left[5 S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} + S_{2,3,3} +$ $+\frac{173}{54}S_{1,1}-\frac{26}{9}S_{1,1,1}-\frac{2}{3}S_{1,1,1,1}-\frac{335}{54}S_2+\frac{7}{2}S_1-2S_{2,1,1}-\frac{28}{9}S_3+\frac{8}{3}S_4\Big]-6(\mathbf{N}_{-}-1)\Big[S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2,-3}-S_{2$ $-2S_{2,1,-2}+3S_{2}\zeta_{3}\right]+(\mathbf{N}_{-}-\mathbf{N}_{+})\left[36S_{1}\zeta_{3}-\frac{9703}{288}S_{1}+12S_{1,-3}-36S_{1,-2}-\frac{2263}{216}S_{1,1}+4S_{3,2}-S_{1,1}+2S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{3,2}-S_{1,1}+S_{2,2}-S_{1,1}+S_{2,2}-S_{2,1}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S_{2,2}-S$ $-16 \mathcal{S}_{1,3}-24 \mathcal{S}_{1,1,-2}-\frac{101}{36} \mathcal{S}_{1,1,1}+\frac{5}{6} \mathcal{S}_{1,1,1,1}-\frac{23}{12} \mathcal{S}_{1,2}+2 \mathcal{S}_{1,2,1}+\frac{12605}{432} \mathcal{S}_{2}+36 \mathcal{S}_{2,-2}+\frac{79}{6} \mathcal{S}_{4}$ $+\frac{55}{18}S_{2,1}-\frac{10}{3}S_{2,1,1}-3S_{2,1,1,1}+\frac{17}{3}S_{2,2}-2S_{2,2,1}-\frac{119}{8}S_{3}-14S_{3,-2}+\frac{47}{3}S_{3,1}-7S_{3,1,1}+4S_{2,2}-2S_{3,2,1}-\frac{119}{8}S_{3,1}-18S_{3,2}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1}-\frac{119}{8}S_{3,1$ $+10 \mathcal{S}_{2,3}\Big]+(1-\mathbf{N}_{+})\Big[\frac{2005}{64}\mathcal{S}_{1}-\frac{117}{2}\mathcal{S}_{1}\zeta_{3}-\frac{39}{2}\mathcal{S}_{1,-3}+\frac{315}{4}\mathcal{S}_{1,-2}-\mathcal{S}_{1,-2,1}+3\mathcal{S}_{1,1,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_{4,1}-2\mathcal{S}_$ $+\frac{2525}{144}S_{1,1}+40S_{1,1-2}-\frac{55}{12}S_{1,1,1}-3S_{1,1,2}+\frac{197}{24}S_{1,2}-\frac{11}{2}S_{1,2,1}+\frac{53}{2}S_{1,3}+\frac{13}{2}S_{3,1,1}-4S_{2,2}$ $-\frac{2831}{72}S_2-37S_{2,-2}+13S_{3,-2}+\frac{1}{2}S_{2,1,1}+\frac{3}{2}S_{2,1,1,1}-\frac{15}{2}S_{3,1}+3S_{2,2,1}-12S_{2,3}+\frac{2407}{48}S_3$ $+\frac{3}{2}S_{2,1}-6S_{3,2}-\frac{57}{2}S_4\Big]\Big)+16C_{\rm A}^{-2}C_{\rm F}\left((2\mathbf{N}_{-2}-4\mathbf{N}_{-}-\mathbf{N}_{+}+3)\left[\frac{138305}{2897}S_1-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S_{1,-2,1}-2S$

Anomalous dimensions: perturbative accuracy NNLO cont'd (2004)

[NPB 691 (2004) 129]

 $-\frac{11}{2}S_{1,-4}+\frac{49}{6}S_{1,-3}+S_{1,-2,-2}-10S_{1,1,-2,1}+\frac{109}{12}S_{1,-2}-\frac{3}{2}S_{1,-2,1}+2S_{1,-2,2}-\frac{3379}{216}S_{1,1}$ $+8S_{1,-3,1}+3S_{1,1}\zeta_{3}+12S_{1,1,-3}+\frac{19}{2}S_{1,1,-2}+2S_{1,1,3,1,1}+\frac{65}{24}S_{1,3,1}-6S_{1,1,3,-2}-\frac{43}{4}S_{1,3,1,1}$ $-4S_{1,1,2} + \frac{55}{12}S_{1,1,2} - 4S_{1,1,2,1} + 2S_{1,1,3} + \frac{71}{24}S_{1,2} + 5S_{1,2,-2} + \frac{55}{12}S_{1,2,1} - 4S_{1,2,1,1} + 6S_{1,2,2}$ $+\frac{11}{2}S_{1,3}+4S_{1,3,1}-\frac{3}{2}S_{1,4}-\frac{395}{54}S_2-7S_{2,-3}-\frac{11}{6}S_{2,-2}+4S_{2,-2,1}+2S_{2,1,-2}-2S_{2,1,1,1}$ $+\frac{17}{3}S_{2,1,1}+3S_{2,1,2}-\frac{1}{3}S_{2,2}+3S_{2,2,1}-3S_{2,3}+4S_{3,1,1}-4S_{3,2}]+(\mathbf{N}_{-}-1)\left[6S_{2}\xi_{3}-8S_{2,-2,1}\right]$ $+ (\mathbf{N}_{-} - \mathbf{N}_{+}) \left[\frac{57595}{1206} S_{1} - 12S_{1}\zeta_{3} - \frac{31}{6}S_{1,-3} - \frac{143}{6}S_{2,-2} + \frac{25}{3}S_{1,-2,1} - \frac{689}{54}S_{1,1} + \frac{50}{3}S_{1,1,-2} + \frac{50}{3}S$ $+\frac{11}{18} S_{1,1,1} - \frac{11}{6} S_{1,1,1,1} + \frac{229}{36} S_{1,2} + \frac{113}{12} S_{1,3} - \frac{2200}{27} S_2 - 3 S_{2,-3} - 12 S_{3,2} + 9 S_{1,-2} + \frac{31}{2} S_{2,1}$ $-18 S_{2,1,-2} + \frac{13}{6} S_{2,1,1} + 4 S_{2,1,1,1} - \frac{37}{3} S_{2,2} - \frac{25}{2} S_{2,3} - 31 S_3 - 9 S_{3,-2} - \frac{463}{12} S_{3,1} + 4 S_{3,1,1} + S_4$ $-\frac{13}{2}S_{4,1}-8S_{5}\Big]+(\mathbf{N_{-}}-\mathbf{N_{+2}})\Big[\frac{4}{3}S_{1,-2,1}-\frac{2105}{81}S_{1}-\frac{8}{3}S_{1,-3}-10S_{1,-2}-\frac{109}{27}S_{1,1}-\frac{4}{3}S_{1,1,-2}$ $+\frac{37}{9}S_{1,1,1}+\frac{2}{3}S_{1,1,1,1}-\frac{145}{18}S_{1,2}-\frac{4}{3}S_{1,3}-\frac{584}{27}S_{2}-4S_{2,-2}-\frac{104}{9}S_{2,1}+\frac{8}{3}S_{2,1,1}-\frac{14}{3}S_{2,2}$ $-\frac{77}{18}S_3-6S_{3,1}+\frac{14}{3}S_4\Big]+(1-N_+)\Big[\frac{39}{2}S_1\zeta_3-\frac{29843}{864}S_1+\frac{17}{2}S_{3,-2}+\frac{145}{6}S_{3,1}-\frac{29}{2}S_{1,-2,1}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S_{3,-2}+\frac{14}{3}S$ $-\frac{25}{2}S_{1,-2}-\frac{57}{2}S_{1,1,-2}-\frac{13}{12}S_{1,1,1}+\frac{5}{4}S_{1,1,1,1}+4S_{1,1,2}-\frac{97}{24}S_{1,2}+4S_{1,2,1}-\frac{41}{2}S_{1,3}+\frac{7417}{72}S_{2,3}$ $+\frac{1}{2} \delta_{2,-3}+\frac{92}{3} \delta_{2,-2}-\frac{53}{12} \delta_{2,1}+15 \delta_{2,1,-2}-\frac{9}{4} \delta_{2,1,1}-3 \delta_{2,1,1,1}+5 \delta_{2,2}+\frac{1}{4} \delta_{4,1}+38 \delta_{3}+8 \delta_{3,2}$ $+\frac{41}{4}S_{2,3}+\frac{9}{2}S_{1,-3}+\frac{92}{3}S_{1,1}-2S_{3,1,1}+\frac{25}{3}S_4+\frac{31}{2}S_5\Big]\Big)+16C_Fn_f^{-2}\Big(\frac{1}{6}(1-\mathbf{N}_+)\Big[\frac{5}{3}S_1-S_{1,1}\Big]$ $-\frac{1}{6}(2\mathbf{N}_{-2}-4\mathbf{N}_{-}-\mathbf{N}_{+}+3)\Big[\frac{1}{3}S_{1}+\frac{5}{3}S_{1,1}-S_{1,1,1}\Big]\Big)+16C_{F}^{2}n_{f}\Big((\mathbf{N}_{-}-\mathbf{N}_{+})\Big[\frac{2}{3}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371}{432}S_{1,2}-\frac{371$ $-\frac{35}{9}S_{1,-2}-\frac{1}{9}S_{1,1}-\frac{1}{3}S_{1,1,1}+\frac{1057}{72}S_2+\frac{16}{3}S_{2,-2}-\frac{8}{9}S_{2,1}+\frac{1}{3}S_{2,1,1}-\frac{2}{3}S_{2,2}+\frac{181}{12}S_3-\frac{2}{3}S_{3,1}-\frac{1}{3}S_{3,1}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,1}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,1}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3,2}-\frac{1}{3}S_{3$ $-\frac{1}{\pi}S_4+4S_5\Big]+(2\mathbf{N_{-2}}-4\mathbf{N_{-}}-\mathbf{N_{+}}+3)\Big[2S_1\zeta_5-\frac{1}{\pi}S_{1,2,1}-\frac{31}{\pi^2}S_{1,-2}+\frac{95}{\pi^2}S_2+\frac{1}{\pi}S_{1,3}+\frac{1}{\pi}S_{1,2}-\frac{1}{\pi^2}S_{1,3}+\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3}-\frac{1}{\pi^2}S_{1,3$ $-\frac{1625}{144}S_{1}-\frac{5}{6}S_{1,1,1,1}-\frac{2}{3}S_{1,1,2}-\frac{7}{108}S_{1,1}+\frac{83}{36}S_{1,1,1}+\frac{2}{3}S_{2,-2}\Big]-\frac{4}{9}(\mathbf{N}_{-}-\mathbf{N}_{+2})\Big[\frac{7}{2}S_{1}-\frac{11}{6}S_{2,-2}-\frac{1}{3}S_{1,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}{3}S_{2,-2}-\frac{1}$ $- \frac{144}{S_{1,-2} - S_3} + (1 - \mathbf{N}_+) \left[\frac{15137}{864} S_1 + \frac{49}{6} S_{1,-2} - \frac{107}{36} S_{1,1} + \frac{19}{12} S_{1,1,1} - \frac{5}{6} S_{1,2} - 10 S_2 - 4 S_{2,-2} \right]$ $-\frac{1}{2}S_{2,1,1}+S_{2,2}-\frac{155}{24}S_3+S_{3,1}+S_4-6S_5\Big]\Big)+16C_F{}^3\Big((2\mathbf{N_{-2}}-4\mathbf{N_{-}}-\mathbf{N_{+}}+3)\Big[6S_{1,-2,-2}-2(\mathbf{N_{-2}}-4\mathbf{N_{-}}-\mathbf{N_{+}}+3)\Big]$ $-\frac{47}{16}S_{1}-S_{1,-4}-\frac{7}{2}S_{1,-2}+6S_{1,-3}-\frac{47}{16}S_{1,1}+6S_{1,1}\zeta_{3}+4S_{1,1,-3}-6S_{1,1,-2}-3S_{1,1,2}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S_{1,1,3}-3S$ $-\frac{23}{8} S_{1,1,1}-\frac{9}{2} S_{1,1,1,1}+2 S_{1,1,1,1}+S_{1,1,1,2}+3 S_{1,1,2,1}+\frac{7}{4} S_{1,2}+2 S_{1,2,-2}+2 S_{1,2,1,1}-2 S_{1,2,2}$ $-\frac{3}{2}S_{1,3}\Big]+2(\mathbf{N}_{-}-1)\Big[6S_{2}\zeta_{3}-4S_{2,1,-2}+8S_{3,-2}\Big]+(\mathbf{N}_{-}-\mathbf{N}_{+})\Big[\frac{287}{32}S_{1}-24S_{1}\zeta_{3}+S_{1,1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}-2S_{1,1,1}$ $-12 S_{1,-3}+36 S_{1,-2}+\frac{111}{8} S_{1,1}+16 S_{1,1,-2}+\frac{1}{4} S_{1,1,1}+\frac{9}{2} S_{1,2}-2 S_{1,2,1}+9 S_{1,3}-4 S_{3,1}-5 S_{2,3}$ $+ 3 S_{3,1,1} - \frac{91}{16} S_2 + 8 S_{2,-3} - 30 S_{2,-2} - \frac{41}{4} S_{2,1} + S_{2,1,1} - S_{2,1,1,1} + 2 S_{2,2,1} - \frac{35}{8} S_3 - S_4 + 3 S_{4,1} - S_{4,1,1} - S_{4,1,1}$ $-2S_{5}\Big]+(1-\mathbf{N}_{+})\Big[395_{1}\zeta_{3}-\frac{749}{64}S_{1}+20S_{1,-3}-\frac{141}{2}S_{1,-2}-\frac{433}{16}S_{1,1}+6S_{1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,1,1,1}-\frac{17}{4}S_{1,$ $- \ 30 \\ S_{1,1,-2} - S_{1,1,2} - \frac{19}{4} \\ S_{1,2} + \frac{3}{2} \\ S_{1,2,1} - \frac{57}{4} \\ S_{1,3} + 21 \\ S_{2} - 10 \\ S_{2,-3} + 35 \\ S_{2,-2} - \frac{9}{2} \\ S_{3,1,1} + \frac{37}{4} \\ S_{4,3} + \frac{37}{4} \\$ + $\frac{19}{4}S_{2,1}$ + $\frac{9}{4}S_{2,1,1}$ + $\frac{3}{2}S_{2,1,1,1}$ + $3S_{2,2}$ - $3S_{2,2,1}$ + $\frac{11}{2}S_{2,3}$ - $\frac{485}{16}S_3$ + $\frac{27}{4}S_{3,1}$ - $\frac{9}{2}S_{4,1}$]). (3.12)

 $\gamma_{38}^{(2)}(N) = 16C_AC_Pn_f \left(\frac{241}{288} + (N_{-2} - 2N_{-} - 2N_{+} + N_{+2} + 3)\right) \left[4S_1\zeta_3 - \frac{15331}{648}S_1 - \frac{44}{9}S_{1,-2} + \frac{15331}{648}S_1 - \frac{14}{9}S_{1,-2}\right]$ $-\frac{2}{3} S_{1,-3} + \frac{4}{3} S_{1,-2,1} - \frac{521}{100} S_{1,1} - \frac{16}{3} S_{1,1,-2} + \frac{1}{9} S_{1,1,1} - \frac{4}{3} S_{1,1,1,1} + \frac{4}{3} S_{1,1,2} - \frac{17}{10} S_{1,2} - \frac{8}{3} S_{1,3} - \frac{17}{3} S_{1,2} - \frac{17}{10} S_{1,2} - \frac{8}{3} S_{1,3} - \frac{17}{3} S_{1,2} - \frac{17}{3} S_{1,2}$ $+\frac{86}{27}S_2+\frac{4}{3}S_{2,-2}-\frac{2}{3}S_{2,1}+\frac{2}{3}S_{2,1,1}-\frac{4}{3}S_{2,2}\Big]+(\mathbf{N}_-+\mathbf{N}_+-2)\Big[17S_1\zeta_3+\frac{25}{3}S_{1,-3}-\frac{8}{3}S_{1,-2,1}-\frac{8}{3}S_{1,$ $-\frac{70}{3}S_{1,1,-2}+\frac{31}{36}S_{1,1,1}-\frac{7}{3}S_{1,1,1,1}+\frac{7}{3}S_{1,1,2}-\frac{55}{6}S_{1,3}]+(\mathbf{N_{-}}-\mathbf{N_{+}})\left[\frac{133}{18}S_{1,2}-\frac{221}{9}S_{1,-2}-\frac{133}{18}S_{1,2}-\frac{133$ $-\frac{673}{54}S_{1,1}+\frac{4948}{81}S_1-\frac{49}{108}S_2-12S_2\zeta_3-4S_{2,-3}+17S_{2,-2}+\frac{119}{6}S_{2,1}+16S_{2,1,-2}+6S_{4,1}$ $-\frac{7}{6} S_{2,1,1} + 2 S_{2,1,1,1} - 2 S_{2,1,2} - S_{2,2} + 7 S_{2,3} + \frac{251}{12} S_3 - \frac{10}{3} S_{3,1} - S_{3,1,1} + 4 S_{3,2} - \frac{29}{6} S_4 + 8 S_5 \Big]$ $\begin{array}{l} -8(\mathbf{N}_{-}-1)S_{3,-2}+(\mathbf{N}_{-}-\mathbf{N}_{+2})\Big[\frac{127}{18}S_{3}-\frac{511}{12}S_{1}-6S_{1,-2}-\frac{97}{12}S_{1,1}-3S_{1,2}+2S_{3,1}-\frac{103}{27}S_{2}\\ -\frac{8}{3}S_{2,-2}-\frac{16}{9}S_{2,1}-\frac{2}{3}S_{2,2}\Big]+(1-\mathbf{N}_{+})\Big[\frac{1807}{324}S_{1}+\frac{694}{9}S_{1,-2}+\frac{5511}{108}S_{1,-1}-\frac{52}{9}S_{1,2}-\frac{1667}{54}S_{2}\\ \end{array}$ $-\frac{68}{3}S_{2,-2}-\frac{53}{4}S_{2,1}-\frac{7}{3}S_{2,1,1}+\frac{19}{6}S_{2,2}+\frac{67}{12}S_{3}+\frac{9}{2}S_{3,1}+\frac{33}{2}S_{4}-20S_{3}\Big]+\frac{6923}{324}S_{1}-2S_{1}\zeta_{3}$ $+\frac{2}{3} S_{1,-3}+\frac{44}{9} S_{1,-2}-\frac{4}{3} S_{1,-2,1}+\frac{521}{108} S_{1,1}+\frac{16}{3} S_{1,1,-2}-\frac{1}{9} S_{1,1,1}+\frac{4}{3} S_{1,1,1,1}-\frac{4}{3} S_{1,1,2}+\frac{8}{3} S_{1,3}$ $+\frac{17}{18}S_{1,2}-\frac{86}{27}S_2-\frac{4}{3}S_{2,-2}+\frac{2}{3}S_{2,1}-\frac{2}{3}S_{2,1,1}+\frac{4}{3}S_{2,2}\right)+16C_An_f^{-2}\left(\frac{11}{72}(1-N_+)S_2-\frac{65}{162}S_1-\frac{11}{16}S_2-\frac$ $+\frac{13}{64}S_{1,1} - \frac{29}{200} + (N_{-2} - 2N_{-} - 2N_{+} + N_{+2} + 3)\left[\frac{59}{143}S_{1} - \frac{13}{64}S_{1,1}\right] - \frac{1}{6}(N_{-} - N_{+})\left[S_{2} - \frac{13}{64}S_{1,1}\right] - \frac{1}{6}(N_{+} - N_{+})\left[S_{2} - \frac{1}{6}S_{1,1}\right] - \frac{1}{6}(N_{+} - N_{+})\left[S_{2} - \frac{1}{6}S_{1,1}\right] - \frac{1}{6}(N_{+} - N_{+})\left[S_{$ $-2S_{2,1}+S_3$ + $(N_-+N_+-2)\left[\frac{47}{648}S_1-\frac{19}{216}S_{1,1}\right]-\frac{13}{54}(N_--N_{+2})S_2$ + $16C_A^{-2}n_f\left(\frac{233}{288}\right)$ $+ (\mathbf{N_{-2}} - 2\mathbf{N_{-}} - 2\mathbf{N_{+}} + \mathbf{N_{+2}} + 3) \left[\frac{1204}{81} S_1 - 4S_1 \zeta_3 - \frac{2}{3} S_{1,-3} + \frac{19}{3} S_{1,-2} + 2S_{1,1,-2} + \frac{11}{3} S_{1,2} + \frac{11}$ $-\frac{2}{3}S_{1,-2,1}+\frac{205}{108}S_{1,1}-\frac{71}{27}S_2-\frac{2}{3}S_{2,-2}+\frac{11}{3}S_{2,1}\right]+(\mathbf{N}_-+\mathbf{N}_+-2)\Big[\frac{305}{18}S_{1,-2}-\frac{1405}{648}S_1$ $-85_{1}\zeta_{3} - \frac{31}{6}S_{1,-3} + \frac{4}{3}S_{1,-2,1} + \frac{2441}{216}S_{1,1} + 9S_{1,1,-2} + \frac{4}{9}S_{1,2} + \frac{25}{12}S_{1,3} + (\mathbf{N}_{-} - \mathbf{N}_{+}) \left[\frac{109}{108}S_{2} + \frac{109}{108}S_{2} + \frac{109}{108}S_$ $+6 S_2 \zeta_3+3 S_{2,-3}-\frac{59}{6} S_{2,-2}-\frac{71}{12} S_{2,1}-6 S_{2,1,-2}-\frac{2}{3} S_{2,2}-\frac{3}{2} S_{2,3}-\frac{64}{9} S_3+5 S_{3,-2}+\frac{5}{12} S_{3,1}$ $-2 S_4 - \frac{3}{2} S_{4,1} \Big] + (\mathbf{N}_- - \mathbf{N}_{+4}) \Big[\frac{2}{3} S_{2,-2} - \frac{2243}{108} S_2 + \frac{31}{9} S_3 - \frac{2}{3} S_{3,1} \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_{3,1} \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_2 + S_5 - \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big[\frac{6815}{216} S_3 + \frac{1}{3} S_3 \Big] \Big] + (1 - \mathbf{N}_+) \Big] + (1$ $+\frac{25}{3} S_{2,-2} - \frac{8}{9} S_{2,1} - \frac{473}{26} S_3 - 4 S_{3,-2} - \frac{25}{6} S_{3,1} + \frac{31}{6} S_4 \Big] - \frac{10}{9} S_{-3} - \frac{1}{3} S_{1,3} - \frac{5443}{234} S_1 + 2 S_1 \zeta_3$ $+\frac{2}{3}S_{1,-3}-\frac{37}{9}S_{1,-2}+\frac{2}{3}S_{1,-2,1}-\frac{205}{108}S_{1,1}-2S_{1,1,-2}-\frac{13}{9}S_{1,2}+\frac{2}{3}S_{-2,-2}+\frac{151}{54}S_{2}+\frac{2}{3}S_{2,-2}$ $-\frac{13}{9}S_{2,1}-\frac{10}{9}S_{3}-\frac{1}{3}S_{3,1}+16C_{A}^{-3}\left((N_{-2}-2N_{-}-2N_{+}+N_{+2}+3)\left[\frac{73091}{648}S_{1}-16S_{1,-4}-2N_{-}+N_{+2}+3\right]\right)$ $+\frac{88}{3}S_{1,-3}+16S_{1,-3,1}+\frac{85}{6}S_{1,-2}+4S_{1,-2,-2}-11S_{1,-2,1}+4S_{1,-2,2}-\frac{413}{109}S_{1,1}+24S_{1,1,-3}$ $+ 11 \mathcal{S}_{1,1,-2} - 16 \mathcal{S}_{1,1,-2,1} + 8 \mathcal{S}_{1,1,3} - \frac{67}{9} \mathcal{S}_{1,2} + 8 \mathcal{S}_{1,2,-2} + 8 \mathcal{S}_{1,2,2} + \frac{55}{3} \mathcal{S}_{1,3} + 8 \mathcal{S}_{1,3,1} - 8 \mathcal{S}_{1,4}$ $-\frac{395}{27}S_2-14S_{2,-3}-\frac{11}{3}S_{2,-2}+8S_{2,-2,1}-\frac{67}{9}S_{2,1}+4S_{2,1,-2}+8S_{2,1,2}+\frac{22}{3}S_{2,2}+8S_{2,2,1}$ $-10S_{2,3}+8S_{3,1,1}-8S_{3,2}\Big]+(\mathbf{N}_{-}+\mathbf{N}_{+}-2)\Big[14S_{1,-2,1}-\frac{713}{224}S_{1}-\frac{26}{3}S_{1,-3}-\frac{61}{9}S_{1,-2}$ $-\frac{80}{27}S_{1,1}+14S_{1,1,-2}-\frac{109}{18}S_{1,2}+4S_{1,3}]+(\mathbf{N_{-}-N_{+}})\Big[\frac{473}{216}S_{2}-12S_{2,-3}+5S_{2,-2}-2S_{2,1}$ $-8 S_{2,1-2} + \frac{23}{3} S_{2,2} - 10 S_{2,3} + \frac{665}{36} S_3 - 20 S_{3,-2} + \frac{34}{3} S_{3,1} - 16 S_{3,2} - 21 S_4 - 26 S_{4,1}$ $+(N_{-}-N_{+2})\left[8S_{2,-3}-\frac{9533}{100}S_{2}-\frac{77}{3}S_{2,-2}-8S_{2,-2,1}-8S_{2,1,-2}-\frac{44}{3}S_{2,2}-\frac{1517}{10}S_{3}-8S_{5}-8S_{5,-2$

aN³LO (2020 - ongoing)

 $+8 5 _{3,-2}-\frac{121}{3} 5 _{3,1}+4 5 _{3,2}+44 5 _{4}+16 5 _{4,1}\Big]+(1-N_{+})\Big[\frac{8533}{108} 5 _{2}+\frac{103}{3} 5 _{2,-2}+\frac{1579}{18} 5 _{3,-2}-\frac{103}{18} 5 _{3,-2}+\frac{103}{18} 5 _$ $-8 5 _{2,-3}+8 5 _{2,-2,1}+\frac{109}{9} 5 _{2,1}+8 5 _{2,1,-2}+\frac{28}{3} 5 _{2,2}-4 5 _{3,2}+8 5 _{3,-2}+\frac{71}{3} 5 _{3,1}-16 5 _{4,1}+36 5 _{5,2}-10 5 _{4,1}+20 5 _{5,2}-10 5$ $-\frac{98}{3}S_4\Big]-\frac{79}{32}+4S_{-3}-8S_{-4,1}+\frac{67}{9}S_{-3}-4S_{-3,-2}-2S_{-3,2}-4S_{-2,-3}-\frac{67}{9}S_{1,2}+\frac{413}{108}S_{1,1}$ $-\frac{11}{3}S_{-2,-2}+4S_{-2,-2,1}+4S_{-2,1,-2}-\frac{16619}{167}S_1-\frac{88}{3}S_{1,-3}-\frac{523}{18}S_{1,-2}+11S_{1,-2,1}-\frac{22}{3}S_{2,2}-\frac{12}{3}S_{2,$ $-11S_{1,1,-2}-\frac{33}{2}S_{1,3}+\frac{781}{54}S_2-4S_{2,-3}+\frac{11}{3}S_{2,-2}+4S_{2,-2,1}-\frac{67}{9}S_{2,1}+4S_{2,1,-2}+\frac{11}{6}S_{3,1}$ $+\frac{67}{6}S_{3}-4S_{3,-2}-2S_{3,2}-8S_{4,1}+4S_{5}+16C_{F}n_{f}^{-2}\left((\mathbf{N}_{-2}-2\mathbf{N}_{-}-2\mathbf{N}_{+}+\mathbf{N}_{+2}+3)\left[\frac{4}{6}S_{1,2}-2\mathbf{N}_{-}-2\mathbf{N}_{+}+\mathbf{N}_{+2}+3\right]\right)$ $-\frac{77}{81}S_1 + \frac{16}{27}S_{1,1} - \frac{2}{9}S_{1,1,1} + \frac{7}{9}(N_- + N_+ - 2)\left[S_{1,2} - \frac{1}{2}S_{1,1,1}\right] - \frac{11}{144} + \frac{2}{9}S_{1,1,1} - \frac{16}{27}S_{1,1}$ $+\frac{77}{81}S_{1}-\frac{4}{9}S_{1,2}+\frac{1}{3}(\mathbf{N}_{-}-\mathbf{N}_{+})\left|\frac{211}{27}S_{1}-\frac{139}{18}S_{1,1}+\frac{11}{3}S_{2}+S_{2,1}+S_{2,1,1}-2S_{2,2}-2S_{3,1}+S_{4,2}-S_{4,2}+S_{4,2}+S_{4,3}+S_{4,$ $+\frac{5}{2}S_{3}\Big]-(\mathbf{N}_{-}-\mathbf{N}_{+2})\Big[2S_{1}-S_{1,1}+\frac{11}{27}S_{2}+\frac{2}{9}S_{2,1}-\frac{4}{9}S_{3}\Big]+(1-\mathbf{N}_{+})\Big[\frac{64}{81}S_{1}+\frac{58}{27}S_{1,1}+\frac{1}{3}S_{3}$ $-\frac{10}{3}S_{2}+\frac{1}{3}S_{2,1}\Big]\Big)+16C_{F}^{2}n_{f}\Big(\frac{4}{3}(\mathbf{N}_{-2}-2\mathbf{N}_{-}-2\mathbf{N}_{+}+\mathbf{N}_{+2}+3)\Big[\frac{5}{4}S_{1,2}+\frac{1}{2}S_{1,3}-S_{1,1,1}-\mathbf{N}_{+2}+3(\mathbf{N}_{-}-2\mathbf{N}_{+}+\mathbf{N}_{+2}+3)\Big]\Big]$ $-S_{1,-3}+2S_{1,1,-2}+\frac{31}{16}S_{1,1}+S_{1,1,1,1}-\frac{11}{16}S_1-S_{1,1,2}\Big]+(\mathbf{N}_-+\mathbf{N}_+-2)\Big[\frac{25}{6}S_{1,3}-9S_1\zeta_3$ $-\frac{16}{3}S_{1,-3}+\frac{67}{3}S_{1,-2}-\frac{23}{12}S_{1,1,1}+\frac{7}{3}S_{1,1,1,1}-\frac{7}{3}S_{1,1,2}+\frac{32}{3}S_{1,1,-2}\Big]+(\mathbf{N}_{-}-\mathbf{N}_{+})\Big[2S_{4,1}-2S_{5}-\frac{16}{3}S_{1,1,2}+\frac{32}{3}S_{1,1,2}+\frac{32}{3}S_{1,1,2}-\frac{16}{3}S_{1,2}+\frac{$ $-\frac{773}{24}S_1 - \frac{8}{3}S_{1,1} + \frac{163}{8}S_2 + 6S_2\zeta_3 + 4S_{2,-3} - \frac{32}{3}S_{2,-2} - \frac{8}{3}S_{2,1} - 8S_{2,1,-2} + \frac{5}{3}S_{2,1,1} + 2S_{2,1,2}$ $-2S_{2,1,1,1} - \frac{11}{3}S_{2,2} - 3S_{2,3} - \frac{23}{2}S_3 - 4S_{3,1} + S_{3,1,1} + \frac{13}{6}S_4 + \frac{17}{2}S_{1,2} + (N_- - N_{+2}) \left[\frac{85}{13}S_{1,1} - \frac{13}{12}S_{1,2}\right]$ $+\frac{163}{12}S_1-3S_{1,2}-\frac{9}{2}S_2+\frac{8}{3}S_{2,-2}-\frac{4}{3}S_{2,1}+\frac{4}{3}S_{2,1,1}-\frac{4}{3}S_{2,2}+\frac{14}{3}S_3-\frac{2}{3}S_4\Big]+(1-N_+)\Big[4S_4$ $-\frac{191}{12}S_{1,1}-8S_{1,2}+\frac{20}{3}S_2+8S_{2,-2}+\frac{11}{4}S_{2,1}+S_{2,1,1}-3S_{2,2}-\frac{215}{12}S_3-S_{3,1}+\frac{71}{3}S_1\Big]$ $+8(\mathbf{N}_{-}-1)\mathcal{S}_{3,-2}-\frac{1}{14}+\frac{11}{12}\mathcal{S}_{1}+\frac{4}{2}\mathcal{S}_{1,-3}-\frac{31}{12}\mathcal{S}_{1,1}-\frac{8}{2}\mathcal{S}_{1,1,-2}+\frac{4}{2}\mathcal{S}_{1,1,1}-\frac{4}{2}\mathcal{S}_{1,1,1,1}+\frac{4}{2}\mathcal{S}_{1,1,2}$ $-\frac{5}{2}S_{1,2}-\frac{2}{2}S_{1,3}$.

Anomalous Dimensions: Scale Dependence at LO

As Q^2 increases, PDFs decrease at large x and increase at small x due to radiation Gluon sector singular at N = 1, therefore the gluon grows fater at small x $\gamma_{qq}(1) = 0$ follows from baryon number conservation (beyond LO, $\gamma_{qq}(1) = \gamma_{q\bar{q}}(1)$) $\gamma_{qq}(2) + \gamma_{qg}(2) = \gamma_{gq}(2) + \gamma_{gg}(2) = 0$ follows from momentum conservation

PDFs: Qualitative features

The small-x growth of the gluon PDF follows from singularity of γ_{gg} at N = 1The similar small-x rise of all PDFs follows from singlet-gluon mixing PDF depletion at large x and Q^2 follows from sign change of anomalous dimensions Valence does not evolve multiplicatively because $\gamma_- \neq \gamma_v$ Valence does not vanish at all scales

Parton Distribution Functions

1.3 How can we determine PDFs?

PDF determination in statistical language

Inverse problem

Given a set of data D, determine p(f|D) in the space of functions $f:[0,1] \rightarrow \mathbb{R}.$

The expectation value and uncertainty of each physical observable O that depends on a PDF set [f] are functional integrals of the PDFs

$$\begin{split} \langle \mathcal{O}[f] \rangle &= \int \mathcal{D}f \, p(f|D) \, \mathcal{O}[f] & \text{expectation value} \\ \sigma_{\mathcal{O}}[f] &= \left[\int \mathcal{D}f \, p(f|D) \, \left(\mathcal{O}[f] - \langle \mathcal{O}[f] \rangle \right)^2 \right]^{1/2} & \text{uncertainty} \end{split}$$

THE PROBLEM IS ILL-DEFINED

We want to determine infinite-dimensional objects, the PDFs, from a finite set of data

Solution: parametric regression

Approximate p(f|D) with its projection in the space of parameters $p(\theta|D, H)$ Determine $p(\theta|D, H) \propto p(D|\theta, H)p(\theta|H)$ as MAP $\theta^* = \arg \max_{\theta} p(\theta|D, H)$

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

Emanuele R. Nocera (UNITO)

The ingredients of PDF determination

Each of these ingredients is a source of uncertainty in the PDF determination Each of these ingredients require to make choices which lead to different PDF sets

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

Overview of current PDF determinations

	NNPDF4.0	MSHT20	CT18	HERAPDF2.0	CJ22	ABMP16	
Fixed-target DIS	Ø	Ø	Ø	\boxtimes	Ø	Ø	
JLAB	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\checkmark	\boxtimes	
HERA I+II	\checkmark	\checkmark	\checkmark	\square	\checkmark	\checkmark	
HERA jets	\square	\boxtimes	\boxtimes	\square	\boxtimes	\boxtimes	
Fixed target DY	\square		\square	\boxtimes	\square		
Tevatron W , Z	Ø	Ø	Ø	\boxtimes	Ø	Ø	
LHC vector boson	Ø		\square	\boxtimes	\square	\square	
LHC $W + c \ Z + c$	Ø	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Tevatron jets	Ø	Ø	Ø	\boxtimes	\square	\boxtimes	
LHC jets	Ø	Ø	\square	\boxtimes	\boxtimes	\boxtimes	
LHC top	Ø		\boxtimes	\boxtimes	\boxtimes	\square	
LHC single t	Ø	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
LHC prompt γ		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
statistical treatment	Monte Carlo	Hessian $\Delta\chi^2$ dynamical	Hessian $\Delta\chi^2$ dynamical	Hessian $\Delta \chi^2 = 1$	Hessian $\Delta\chi^2 = 1.645$	Hessian $\Delta \chi^2 = 1$	
parametrisation	Neural Network	Chebyschev pol.	Bernstein pol.	polynomial	polynomial	polynomial	
HQ scheme	FONLL	TR'	ACOT- χ	TR'	ACOT- χ	FFN	
accuracy	aN^3LO	aN^3LO	NNLO	NNLO	NLO	NNLO	
latest update	EPJ C82 (2022) 428	EPJ C81 (2021) 341	PRD 103 (2021) 014013	EPJ C82 (2022) 243	PRD 107 (2023) 113005	PRD 96 (2017) 014011	
All PDF sets are available as (x, Q^2) interpolation grids through the LHAPDF library							

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

1.4 Data

Overview of experimental data

 $N_{\rm dat} = 4618$

Deep Inelastic Scattering

Kinematic coverage

Deep Inelastic Scattering

Re-write the cross section in terms of structure functions (F_2, F_3, F_L) $\frac{d^2\sigma^i}{dxdy} \propto Y_+ F_2^i \mp Y_- x F_3^i - y^2 F_L^i$ $Y_{\pm} = 1 \pm (1-y)^2$ $F_L^i = F_2^i - 2x F_1^i$ $i = \text{NC}(\gamma, Z, \gamma Z), \text{CC}(W^{\pm})$

NC DIS $(\ell p \rightarrow \ell X)$ at LO (NMC, SLAC, BCDMS, HERA)

$$\begin{split} \left[F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z} \right] &= x \sum_q \left[e_q^2, 2e_q g_V^q, (g_V^q)^2 + (g_A^q)^2 \right] (q + \bar{q}) \\ \left[F_3^{\gamma}, F_3^{\gamma Z}, F_3^{Z} \right] &= \sum_q \left[0, 2e_q g_A^q, 2g_V g_A^q \right] (q - \bar{q}) \\ \left[F_L^{\gamma}, F_L^{\gamma Z}, F_L^{Z} \right] &= [0, 0, 0] \end{split}$$

CC DIS $(\ell^- p \to \nu X \text{ or } \bar{\nu} p \to \ell^+ X)$ at LO (CHORUS, NuTeV, HERA)

$$\begin{bmatrix} F_2^{W^-}, F_2^{W^-} \end{bmatrix} = 2x \left[(u + \bar{d} + \bar{s} + c \dots), (d + \bar{u} + \bar{c} + s \dots) \right]$$
$$\begin{bmatrix} F_3^{W^-}, F_3^{W^+} \end{bmatrix} = 2 \left[(u - \bar{d} - \bar{s} + c \dots), (d - \bar{u} - \bar{c} + s \dots) \right]$$
$$\begin{bmatrix} F_L^{W^+}, F_L^{W^-} \end{bmatrix} = [0, 0]$$

isospin $(p \to n)$: $u^p = d^n$ $d^p = u^n$ $\bar{u}^p = \bar{d}^n$ $\bar{d}^p = \bar{u}^n$

deuteron target approximated as the average of one proton and one neutron $Q^2 \ge Q_{\min}^2 \sim 1 \text{ GeV}^2$ $W^2 = Q^2(1-x)/x \ge W_{\min}^2 \sim 10 \text{ GeV}^2$

Emanuele R. Nocera (UNITO)

Deep Inelastic Scattering

NMC, NPB 487 (1997) 3; CHORUS, PLB 632 (2006) 65

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

Drell-Yan

Kinematic coverage

Drell-Yan

Work out the cross section differential in the rapidity of the lepton pair

$$\frac{d\sigma^{i}}{dy} \propto A^{i}\mathcal{L}^{i} \qquad i = \mathrm{NC}(\gamma, \mathbf{Z}, \gamma \mathbf{Z}), \mathrm{CC}(\mathbf{W}^{\pm})$$

$$\mathsf{NC} \ \mathsf{DY} \ (\gamma, \mathbf{Z}) \ \mathsf{at} \ \mathsf{LO} \qquad \qquad \mathsf{CC} \ \mathsf{DY} \ (W^{\pm}) \ \mathsf{at} \ \mathsf{LO}$$

$$\mathsf{A}^{\gamma}\mathcal{L}^{\gamma}, A^{Z}\mathcal{L}^{Z} \Big] = \left[\sum_{q} e_{q}^{2}q\bar{q}, \sum_{q,q'} |V_{qq'}^{\mathrm{CKM}}|q\bar{q'}\right] \qquad \left[A^{W^{\pm}}\mathcal{L}^{W^{\pm}}\right] = \left[\sum_{q} \left((g_{V}^{q})^{2} + (g_{A}^{q})^{2}\right)q\bar{q}\right]$$

isospin $(p \to n)$: $u^p = d^n$ $d^p = u^n$ $\bar{u}^p = \bar{d}^n$ $\bar{d}^p = \bar{u}^n$

deuteron target approximated as the average of one proton and one neutron different experiments measure different cross section combinations

$$\begin{split} & \frac{\sigma_{pn}^Z}{\sigma_{pp}^P} \approx \frac{4/9u\bar{d} + 1/9d\bar{u}}{4/9u\bar{u} + 1/9d\bar{d}} \to \frac{\bar{d}}{\bar{u}} & \text{DY } p/d \text{ asymmetry (NuSea, SeaQuest)} \\ & \frac{\sigma_{p\bar{p}}^{W^+}}{\sigma_{p\bar{p}}^{W^+}} \approx \frac{ud + \bar{d}\bar{u}}{du + \bar{u}\bar{d}} \to \frac{ud}{du} & W^{\pm} \text{ asymmetry (CDF, D0)} \\ & \sigma_{pp}^{W^+} \approx u\bar{d} + c\bar{s} \quad \sigma_{pp}^Z \approx u\bar{u} + d\bar{d} + s\bar{s} \to s, \bar{s} & W^{\pm} \text{ and } Z \text{ production (ATLAS, CMS, LHCb)} \\ & \frac{\sigma_{pp}^{W^+}}{\sigma_{pp}^{W^-}} \approx \frac{u\bar{d} + \bar{d}u}{d\bar{u} + \bar{u}d} \to \bar{u} - \bar{d} & W^{\pm} \text{ muon asymmetry (ATLAS, CMS)} \end{split}$$

Drell-Yan

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

27 August 2024 36 / 50

Zp_T , $t\bar{t}$, Single-Inclusive Jet, and Dijet Production

Emanuele R. Nocera (UNITO)

Zp_T , $t\bar{t}$, Single-Inclusive Jet, and Dijet Production

Various differential distributions, all proportional to the gluon PDF at LO

$$\underline{Zp_T \text{ production}}: \frac{d\sigma^2}{dp_T^Z dm_{\ell\ell}}, \frac{d\sigma^2}{dp_T^Z dy_Z} \text{ (ATLAS) } \frac{d\sigma}{dp_T^Z} \text{ (CMS)}$$

need one final-state parton, then initial-state quark and gluon are on the same footing wide p_T range, constraints on a wide x (typically intermediate) and Q^2 range

$$t\bar{t}$$
 production: $\frac{d\sigma}{dp_T^t}$, $\frac{d\sigma}{dy^t}$, $\frac{d\sigma}{dy^{t\bar{t}}}$, $\frac{d\sigma}{dm^{t\bar{t}}}$ (ATLAS and CMS)

process initiated by two gluons in the initial state

differential cross sections reconstructed at parton level (additional systematics) normalise by $\sigma_{tot}^{t\bar{t}}$ (systematics largely cancel, but loose control on PDF shape) particle-level cross sections are theoretically more complicated

wide rapidity range, constraints on the large-x region

single-inclusive jet and dijet production: $\frac{d\sigma^2}{dydp_T}$, $\frac{d\sigma^2}{dy_{1,2}dm_{1,2}}$ (HERA, ATLAS and CMS)

process initiated by two gluons in the initial state

be careful with systematic uncertainties (mostly driven by jet energy reconstruction) can also be measued in DIS

wide rapidity range, constraints on the large-x region

Zp_T , $t\bar{t}$, Single-Inclusive Jet, and Dijet Production

Emanuele R. Nocera (UNITO)

27 August 2024

Scaling Violations and Heavy Flavour Production

Scale dependence in DIS of singlet structure function

 $\frac{d}{d\ln(Q^2)}F_2^{\Sigma}\approx \frac{\alpha_s}{2\pi}\left[\gamma_{qq}f_{\Sigma}+2n_f\gamma_{gq}f_g\right]$

ANOMALOUS DIMENSIONS 20 15 10 5 γ_{qg} 0 -5 ō pp 2

the gluon PDF can be determined at small x from DIS scaling violations (from HERA)

Heavy quark production in DIS initiated by gluons

the gluon PDF is determined by tagging a c or a b quark in the final state (HERA)

Single t, Direct γ , W, Z+c-jets

Single t, Direct γ , W, Z+c-jets

Other processes, currently limited by experimental uncertainties Single t production (t-channel): $\frac{d\sigma}{dp_{\pi}^{t}}$, $\frac{d\sigma}{dy^{t}}$, $\frac{d\sigma}{dy^{t}}$, $\frac{d\sigma}{dy^{t}}$ (ATLAS, CMS) partonic cross sections similar to CC DIS; t reconstructed from Wb decay potential sensitivity to \bar{u} and \bar{d} , also through ratios of t and \bar{t} production potential currently limited by large experimental uncertainties <u>Prompt γ production</u>: $\frac{d\sigma^2}{dE_{\gamma}^2 u^{\gamma}}$ (ATLAS and CMS) gluon-quark-initiated Compton scattering potential sensitivity to the gluon PDF potential currently limited by large experimental uncertainites W, Z + charm-tagged jets: $\frac{d\sigma}{du}$ (ATLAS and CMS) W + c: sensitivity to strange PDF (and $s - \bar{s}$ asymmetry)

W + Z: sensitivity to charm PDF (including intrinsic charm and $c - \bar{c}$ asymmetry) be careful with systematic uncertainties (due to jet tagging algorithm)

More exclusive processes: double gauge boson production, multijet production, ...

generally less precise and potentially contaminated by BSM physics

Single t, Prompt γ , W, Z+c-jets

	Hadronic Process	Partonic Process	PDFs probed	x coverage
Lepton-nucleon	$\ell^{\pm}\{p,n\} \to \ell^{\pm} + X$	$\gamma^* q \to q$	q, ar q, g	$x \gtrsim 0.01$
	$\ell^{\pm} n/p \to \ell^{\pm} + X$	$\gamma^* d/u o d/u$	d/u	$x\gtrsim 0.01$
	$\nu(\bar{\nu})N \to \mu^-(\mu^+) + X$	$W^*q \rightarrow q'$	$q,ar{q}$	$0.01 \lesssim x \lesssim 0.5$
	$\nu N \to \mu^- \mu^+ + X$	$W^*s \rightarrow c$	s	$0.01 \lesssim x \lesssim 0.2$
	$\bar{\nu}N \to \mu^+\mu^- + X$	$W^* \bar{s} \to \bar{c}$	\overline{s}	$0.01 \lesssim x \lesssim 0.2$
	$e^{\pm}p \rightarrow e^{\pm} + X$	$\gamma^* q \to q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
	$e^+p \to \bar{\nu} + X$	$W^+\{d,s\} \to \{u,c\}$	d, s	$x\gtrsim 0.01$
	$e^{\pm}p \rightarrow e^{\pm}c\bar{c} + X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.1$
	$e^{\pm}p \rightarrow jet(s) + X$	$\gamma^*g o q \bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
Proton-(anti)proton	$pp \to \mu^+ \mu^- + X$	$u\bar{u}, d\bar{d} \to \gamma^*$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
	$pn/pp \to \mu^+\mu^- + X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$
	$p\bar{p}(pp) \rightarrow jet(s) + X$	$gg, qg, qq \rightarrow 2 jets$	g, q	$0.005 \lesssim x \lesssim 0.5$
	$p\bar{p} \to (W^{\pm} \to \ell^{\pm}\nu) + X$	$ud ightarrow W^+$, $ar{u}ar{d} ightarrow W^-$	$u, d, ar{u}, ar{d}$	$x\gtrsim 0.05$
	$pp \to (W^{\pm} \to \ell^{\pm} \nu) + X$	$u \bar{d} ightarrow W^+$, $d \bar{u} ightarrow W^-$	$u,d,\bar{u},\bar{d},(g)$	$x\gtrsim 0.001$
	$p\bar{p}(pp) \to (Z \to \ell^+ \ell^-) + X$	$uu, dd(u\bar{u}, d\bar{d}) \to Z$	u, d(g)	$x\gtrsim 0.001$
	$pp \rightarrow (W+c) + X$	$gs \to W^- c, g\bar{s} \to W^+ \bar{c}$	s, \bar{s}	$x \sim 0.01$
	$pp \rightarrow (Z+c) + X$	$gc \rightarrow Zc, g\bar{c} \rightarrow Z\bar{c}$	$c,ar{c}$	$x \sim 0.01$
	$pp \rightarrow t\bar{t} + X$	$gg ightarrow t \bar{t}$	g	$x \sim 0.1$
	$pp \rightarrow t, \bar{t} + X$	$gq ightarrow t, ar{t}q$	u, d	$x \sim 0.01$
	$pp \rightarrow \gamma + X$	$gq \rightarrow \gamma q$	g	$x \sim 0.01$

All the data together

Emanuele R. Nocera (UNITO)

44 / 50

Overview of current PDF determinations

	NNPDF4.0	MSHT20	CT18	HERAPDF2.0	CJ22	ABMP16		
Fixed-target DIS	Ø	Ø	Ø	\boxtimes	Ø	Ø		
JLAB	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\checkmark	\boxtimes		
HERA I+II	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
HERA jets	Ø	\boxtimes	\boxtimes	Ń	\boxtimes	\boxtimes		
Fixed target DY	\square	\square	\square	\boxtimes	\square	\square		
Tevatron W , Z	Ø	Ø	Ø	\boxtimes	Ø	Ø		
LHC vector boson	\square	\checkmark	\square	\boxtimes	\square	\checkmark		
LHC $W + c \ Z + c$	\square	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		
Tevatron jets	Ø	Ø	Ø	\boxtimes	\square	\boxtimes		
LHC jets	Ø	Ø	\checkmark	\boxtimes	\boxtimes	\boxtimes		
LHC top	Ø	\checkmark	\boxtimes	\boxtimes	\boxtimes	\square		
LHC single t	Ø	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		
LHC prompt γ		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		
statistical treatment	Monte Carlo	Hessian $\Delta\chi^2$ dynamical	Hessian $\Delta\chi^2$ dynamical	Hessian $\Delta \chi^2 = 1$	Hessian $\Delta \chi^2 = 1.645$	Hessian $\Delta \chi^2 = 1$		
parametrisation	Neural Network	Chebyschev pol.	Bernstein pol.	polynomial	polynomial	polynomial		
HQ scheme	FONLL	TR'	ACOT- χ	TR'	ACOT- χ	FFN		
accuracy	aN ³ LO	aN^3LO	NNLO	NNLO	NLO	NNLO		
latest update	EPJ C82 (2022) 428	EPJ C81 (2021) 341	PRD 103 (2021) 014013	EPJ C82 (2022) 243	PRD 107 (2023) 113005	PRD 96 (2017) 014011		
All PDF sets a	All PDF sets are available as (x, Q^2) interpolation grids through the LHAPDF library							

Emanuele R. Nocera (UNITO)

Parton Distribution Functions

Impact of future data: HL-LHC

Emanuele R. Nocera (UNITO)

46 / 50

Impact of future data: EIC

PRD 103 (2021) 096005; PRD 109 (2024) L091501

Impact of future data: FPF

EPJ C84 (2024) 369

48 / 50

1.5 Summary of Lecture 1

Summary of Lecture 1

- Parton Distribution functions are a key ingredient of the LHC program
 - $\longrightarrow \mathsf{PDFs}$ are often the dominant source of uncertainty in theoretical predictions
 - \longrightarrow limiting factor for precision and discovery
- **2** PDFs are related to physical observales via factorisation and evolution
 - \longrightarrow qualitative PDF features are driven by this theoretical framework
 - \longrightarrow valence peak follows from valence sum rules and kinematic vanishing
 - \longrightarrow small- $\!x$ rise follows from rise of anomalous dimensions
 - \longrightarrow correlation of small-x rise and large-x depletion follow from momentum conservation
- PDFs are determined from experimental data by means of parametric regression —> need to define data, theory, and methodology
- Oifferent physical observables constrain different PDF combinations
 - \longrightarrow fixed-target NC DIS: u and d
 - \longrightarrow fixed-target CC DIS: s and \bar{s}
 - \rightarrow HERA NC and CC DIS: $u, \bar{u}, d, \bar{d}, g$ (scaling violations and tagged DIS)
 - \longrightarrow fixed-target DY: u and d at large x
 - \longrightarrow collider DY: u, \bar{u} , d, \bar{d} , s
 - \longrightarrow collider DY+c: s (W) and c (Z)
 - $\longrightarrow Zp_T$, $t\bar{t}$, jets: g

Lecture 2: Theoretical and methodological accuracy in PDF determination