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Lecture 2: jet substructure

35.9fb™" (13 TeV)
a

* hoosted-objects
physics

Events / 7 GeV

* groowming and
tagqging

* calculations for
jet substruecture
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the (ambitious) target of this lecture is to understand this plot



searching for new particles (1)

* Standard analysis: the heavy particle X
decays into two partons, reconstructed as
two jets

ul

ATLAS =
's=8 TeV, jl dt=20.3 fb' =
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* Look for bumps in the dijet
invariant mass distribution

* Wha‘l’ abou‘r EW‘scale ’ 0.3 04 05 1 2 3 4 g
particles at the LHC ?

Signif.  [data-fit]/fit

Reconstructed m. [TeV]


http://arxiv.org/abs/1407.1376

searching for new particles (ll)

* LHC enerqgy (104 GeV) > electro-weak scale (102 GeV)
* EW-scale particles (new physics, Z/W/H/top) are abundantly
produced with a large boost
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source CMS

* their decay-products are then collimated
* if they decay into hadrons, we end up with localised
deposition of energy in the hadronic calorimeter: a jet



ATLAS

EXPERIMENT

Event: 531676916
2015-08-22 04:20:10 CEST

we want to look inside a jet
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we want to look inside a jet



ATLA

EXPERIME
Bvent: 531676916 exploit jets’ properties

2015-08-22 04:2

we want 1o look inside a jet



signal-jet mass

* first jet-observable that comes to mind

* signal jets should have a mass distribution peaked near
the resonance
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signal-jet mass

first jet-observable that comes to mind

signal jets should have a mass distribution peaked near
the resonance

jet mass distribution from W bosons

however, that’s a simple partonic

picture .
F'% 01 | *4/ P i

perturbative and non-pert. s |

emissions from the qgb pair oo nadrons -

broadens and shift the peak - j

underlying event and pile-up e

Miet [GeV]

typically enhance the jet mass



QCP-jet mass

* first jet-observable that comes to mind

* background (QCP) jets acquire mass through showering
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QCP-jet mass

* first jet-observable that comes to mind

* background (QCP) jets acquire mass through showering




jet properties
* we want to studies the properties of jets

* hence, we resolve a (high p:) jet down to a smaller
scale, e.g. its mass

* large logarithwms appear invalidating the fixed-
order expansion

* we heed to reorganise the calculation so that we
can consider any number of soft/collinear
partons: resummation

* vast field with many approaches: dQCD SCET, ete.



* the Lund plane is a powerfullog —

k

aside: the Lund plane

representation of soft-

collinear emissions ) il

kinematics ® ; 0
.. collinear

as the name suggests it was e

first developed in the context %8

of Monte Carlo studies Aow e

useful representation of a jet hon-perfurbative

(also for ML!)

soft-collinear emissions populate the Lund plane uniformly: equal
area = equal probability
now also a powerful observables (measured at the LHC)



aside: the Lund plane
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* soft-collinear emissions populate the Lund plane uniformly: equal
area = equal probability
* pow also a powerful observables (measured at the LHC)



how do we model it ?

* jet properties: we want to compute x-sections and
distributions with many particles in the final state

* fixed-order perturbation theory seems inadequate

* interesting physics happens at small angular separation and
small energies

* all-order (resummed) calculations are possible and necessary !

 Monte Carlo Parton Showers
emissions at small angles factorize

o, db?
21 0%

we can write a computer program
that simulates these classical
branchings

dzd¢P(z, ¢)

do,11 ~ doy,

|




how do we model it ?

* jet properties: we want to compute x-sections and
distributions with many particles in the final state

* fixed-order perturbation theory seems inadequate

* interesting physics happens at small angular separation and
small energies

* all-order (resummed) calculations are possible and necessary !

~ Analytic Resummation
emissions at small angles factorize

o, db?
do,11 =~ doy, 5

soft emissions factorise in a subtle
way
dopi > dan—dﬁdzd¢ Y Ci;Dij(z,0,9)

z<3

dzdpP(z, ¢)




* powerful general-purpose fools

* provide fully differential events on | S Ty e
which any observable can be measured | =rul /. 5

* inferfaced with non-perturbative RE Tt
models to give a realistic description

* theoretical accuracy difficult to assess
(often low)

VS

Ores = 9o * feasible for a limited number of

| observables
SNACHCENVEN . 0|l defined and improvable accuracy
SR W + state-of-the art (resummation * fixed

. order)
SECEIVAN * provide insights and understanding




the jet mass

quark jets: m [GeV], for p, = 3 TeV
10 100 1000

0.3 rrrrm

]
plain jet mass

o
o

p/odo /dp

* plain jet mass: Sudakov peak, where does it come from ?
* [et’s do an easy calculation: one gluon ewmission in the
collinear limit




the jet mass

R quark jets: m [GeV], for p, = 3 TeV LLO
T 10 1oo 1000 1 do
0.3 ——rrm T ————r—— .
plam Jet mass Q;} o dm?
d6’2 d P
0.2 2Pyq(
Q
©
g X 5 m —2(1 —2) 92 )
=

we demand a mass m

* plain jet mass: Sudakov peak, where does it come from ?
* [et’s do an easy calculation: one gluon ewmission in the
collinear limit



the jet mass

[‘ AL quark Jets m [GeV] for pt 3TeV

LO
10 100 1000 1 do
0.3 —rrrm T —————r—— .
plam Jet mass Q;; g dm2
: R 192 1
0.2 / 92 / dZqu
o] 0 0
o 2 2
g x &6 (m* —z(1 — 2)0°p7,)
N = 1
- asCF _
[ = m " dz  Pgq(2)
;27 m? /(p3.R?)
10 0t 00l o1 1 we do the angular integral
p = m?/(p{ R?) with the delta function

* plain jet mass: Sudakov peak, where does it come from ?
* [et’s do an easy calculation: one gluon ewmission in the
collinear limit



the jet mass

. AL quark Jets m [GeV] for pt 3TeV

LO
10 100 1000 1 do
0.3 —rrrr ———r—————— .
plam Jet mass Q;; g de
: R 192 !
0.2 / 92 / dzPyq(2
o] 0 0
o 2 2
g x &6 (m* —z(1 — 2)0°p7,)

* plain jet mass: Sudakov peak, where does it come from ?
* [et’s do an easy calculation: one gluon ewmission in the
collinear limit



the jet mass

| quark jets: m [GeV], for p, =3 TeV LLO
T 10 1oo 1000 1 do
Y R — S ——————
plam Jet mass Q;} o dm?
: B q92 [
0.2 / 92 / dzPyq(
5 0 0
3 x &6 (m* —z(1 — 2)0°p7,)
B
E OésCF —2
2 = m
E 2T
10°® 107 001 01 1 asCF 2
p= m2/(pt2 Rz) T 7'('

double log: soft & coll. ' | single log: hard coll. '

* plain jet mass: Sudakov peak, where does it come from ?
* [et’s do an easy calculation: one gluon ewmission in the
collinear limit



the jet mass

Ll quark jets: m [GeV], for p; =3 TeV
—~— 10 100 1000

0.3 rrrrr

1 dott- B 1 dot©

]
plain jet mass

I odm? o dm?
= [ 2 2 —
0.2 Pt 21 do™
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/ line of constant mass

vetoed region

* all-order leading logs: veto emissions which would give
100 big a mass
* exponential that gives the no-ewmission probability



the jet mass

‘v_i”"::"":"? quark jets: m [GeV], for p; =3 TeV quark jets: m [GeV], for p; =3 TeV
10 100 1000 10 100 1000
0.3 T . 0.3 —rrr———rrrr——r——rrrr——
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* all-order leading logs: veto emissions which would give
100 big a mass
* exponential that gives the no-ewmission probability



QCP-jet mass: NP effects

3k first jet-observable that comes to wmind

3k background (QCD) jets receive important non-pert
contributions

plain mass: hadronisation (quark jets)

0
T ATLAS

m [GeV], for p,=3 TeV, R = 1 S5 Fower Just=a7t" vo=7Tov-
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Leading jet mass, m" [GeV]

hadronisation and UE pile-up (datal)



http://prd.aps.org/abstract/PRD/v86/i1/e014022
http://prd.aps.org/abstract/PRD/v86/i1/e014022

heyond the mass: substructure

* need to go beyond the mass and exploit jet
substructure : groowming and tagqing:

* clean the jets up by removing soft radiation

* identity the features of hard decays and
cut on thewm



heyond the mass: substructure

* need to go beyond the mass and exploit jet
substrueture : grooming and tagqing:

* clean the jets up by removing soft radiation

* identity the features of hard decays and
cut on thewm

core-idea for groowming:
O
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heyond the mass: substructure

* need to go beyond the mass and exploit jet
substructure : groowming and tagqing:

* clean the jets up by removing soft radiation

* identity the features of hard decays and
cut on thewm

core-idea for groowming:

3k identify the “right”
angular scale

3k throw away what is soft
& large angle

3k leftwith a groowmed jet



heyond the mass: substructure

* pneed fo go beyond the mass and exploit jet
substructure : groowming and tagging:

* clean the jets up by removing soft radiation

* identify the features of hard decays and
cut on thewm

core-idea for 2-body tagginag:

1




heyond the mass: substructure

* peed to go beyond the mass and exploif jet
substructure : groowming and tagging:

* clean the jets up by removing soft radiation

* identity the features of hard decays and

cut on them
core-idea for 2-body tagging: min(z,1 — 2) > zcut
qu:CF1+(1_Z)2
symwedric asymwetric
sharing of sharing of
the energy q 2 the energy




analytic understanding at work:

s O f‘l’ d rO p Larkoski, SM, Soyez and Thaler (2014)

1. Undo the last stage of the C/A clustering. Label the two
subjets ji and j2.

then deew j o be the sof{-drop jet.

3. Otherwise redefine j to be the harder subjet and iterate.
1-prong jets can be either kept (grooming mode) or discarded (tagging mode)

* generalisation of the (modified) Mass Drop procedure
* no mass drop condition (not so important)
* wMPT recovered for (=0 e s, M and Salam (2013
* sowe inspiration from semi-classical jets

Tseng and Evans (2013)



analytic understanding at work:

s O f‘l’ d rO p Larkoski, SM, Soyez and Thaler (2014)

1. Undo the last stage of the C/A clusfermg Label the two
subjets ji and j2.

Groomed
Clustering Tree

2.1 ol ey (AR12>6 [

pPT1 + P12

then deew j to be the soft-drop jet. P

Zg > Zcut egB

3. Otherwise redefine j to be the harder subjet and tterate.

1-prong jets can be either kept (grooming mode) or discarded (tagging mode)

* generalisation of the (modified) Mass Drop procedure
* no mass drop condition (not so important)
* wMPT recovered for (=0 e s, M and Salam (2013
* sowe inspiration from semi-classical jets

Tseng and Evans (2013)



soft drop as a groomer

* yseful fo consider
the soft-gluon
phase space

* soft-drop
-~ condition bhecomes

* goft drop always removes soft radiation entirely
(hence the name)
* for (>0 soft-collinear is partially removed



soft drop and mMDT

* soft-drop
- condition becomes

* for =0 soft-collinear is also entirely removed (MMPUT limit)



soft drop as a fagger

* soft-drop
condition becomes

soft dropped . ( 0 >5

* for i<0 sowme hard-collinear is also partially removed



./mZ = 2pg - pg =~ z(1 —X)@ngr’
® . vetoed region

soft-drop mass at LL

* 0ne ewmission
sets a mass m

* veto emissions
that would give
100 big a mass

* soft drop here
has no effect

o1 do
Y(p)= [ dp'——
(p) _/ e

soft dropped /

smaller p = m2/ (R2 p7?)

line of constant




soft-drop mass at LL

* only one
transition point
at p = Zeut

soft dropped /

smaller p = m2/ (R2 p7?)

* s0ft & soft
collinear
radiation is
partially
removed

* only sinale logs
for -=0!




precision jet substructure

Results: NNLL+? Jet Substructure

* Using SCET,
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more efficient

performance & resilience

performance

truth v. parton

resilience
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more efficient

symmary of lecture 2

* boosted-object physics

* groowing and tagging

* precision substructure
physics with sof{-drop

movre robust



more efficient

suymmary of lecture
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looking at ML
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* challenge
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robustness for
ML algorithms?
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homework 3

* Gluon splitting into bottom quarks g—bb

is important for H—bb studies. What’s
its average mass? (take my=0)



