

Lecture 1: jets

* in these two lectures we study hadronic final states in terms of so-called jets

 lecturel: we'll discuss jet definitions: the focus will be on the theory and experimental motivations behind certain choices

* lecture2: basics concepts of jet substructure and our first principle understanding

* I have only 2 hours, so I had to compromise. Two big topics are missing: energy-correlators and machinelearning approaches. Ask me during recitation if you're interested!

* G. Salam: "Towards jetography"

* G. Soyez: "Pileup mitigation at the LHC: a theorist's view"

* SM, M. Spannowsky, G. Soyez, "Looking inside jets: an introduction to jet substructure and boosted-object phenomenology"

Lecture 1: jets

inspire by Dave's lectures, let us start from perturbative QCD

* $pp \rightarrow Z(\rightarrow f\bar{f}) + X$

 key-process at the LHC: SM tests and background (e.g. monojets)

* Can we characterise X?

X at lowest order

we can employ perturbation theory: at O(α_s), X
 is just a quark or a gluon

* momentum conservation relates the kinematics of X to the Z one

X beyond LO

real emission (2 partons)

* at $O(\alpha_s^2)$, we have

virtual correction (1 parton)

* can we compute the cross section for Z+2 partons?

- * ISR collinear singularities absorbed by PDFs
- * FSR singularities should cancel against virtual corrections... but we don't have them!

 similarly, we cannot compute the cross section for Z+1 parton

Jets come to rescue us

* pert. theory gives us a divergent result for Z+fixed number (n) of partons!

* we need to be more inclusive: Z+ n "objects"

* these objects are called jets

jets for experimentalists

 high-energy collisions ofter results into collimated sprays of particles

jets for experimentalists

 high-energy collisions ofter results into collimated sprays of particles

* why?

gluon emission enhanced in the soft/ collinear limit $\int \frac{dE}{E} \frac{d\theta}{\theta} \alpha_s \gg 1$

D

* how many
jets do you
see?

* two is
 probably a
 good guess

* eyeballing not good enough!

2 clear jets

2 clear jets

* Weneed a way to define jets in a given event

a jet algorithm + its parameters (e.g. R) + a recombination scheme = a jet definition

* examples of recombination schemes:

* E-scheme: sum all the four momenta

* winner-take-all

jet clustering algorithm

 an algorithm that maps the momenta of the final state particles into the momenta of a certain number of jets

* jet definitions must make sense for both theorists and experimentalists!

what do theorists want?

- * Infra-Red and Collinear Safety!
- * An observable is IRC safe if, in the limit of a collinear splitting, or the emission of an infinitely soft particle, the observable remains unchanged: we need IRC safety if

 $O(X; p_1, \ldots, p_n, p_{n+1} \to 0) \to O(X; p_1, \ldots, p_n)$ we want to compute things bound in $O(X; p_1, \ldots, p_n || p_{n+1}) \to O(X; p_1, \ldots, p_n + p_{n+1})$

what do experimentalists want?

* jet algorithms must be usable on real events

* fast and easy to calibrate

the Snowmass accord

- * simple to implement in an experimental analysis;
- * simple to implement in theoretical calculations;
- * defined at any order of perturbation theory;
- yields finite cross-sections at any order of perturbation theory;
- * yields cross-sections and distributions that are relatively insensitive to hadronisation

types of algorithms

* cone algorithms

- * top-down approach: find coarse regions of energy flow.
- * how? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)
- * can be programmed to be fairly fast, at the price of being complex and IRC unsafe
- * Examples: JetClu, MidPoint, ATLAS cone, CMS cone, SISCone ...

sequential recombination algorithms

- bottom-up approach: combine particles starting from closest ones
- how? Choose a distance measure, iterate recombination until few objects left, call them jets
- usually trivially made IRC safe, but their algorithmically complex (unless you're clever)
- Examples: Jade, k_t, Cambridge/ Aachen, anti-k_t ...

for a complete review see G. Salam, Towards jetography (2009)

a bit of history

* first calculation done for cone algorithm

* two resolution parameters

To study jets, we consider the partial cross section. $\sigma(E,\theta,\Omega,\varepsilon,\delta)$ for e⁺e⁻ hadron production events, in which all but a fraction $\varepsilon <<1$ of the total e⁺e⁻ energy E is emitted within some pair of oppositely directed cones of half-angle $\delta <<1$, lying within two fixed cones of solid angle Ω (with $\pi\delta^2 <<\Omega <<1$) at an angle θ to the e⁺e⁻ beam line. We expect this to be measur-

18

Sterman and Weinberg, Phys. Rev. Lett. 39, 1436 (1977):

* let's start with the NLO 2-jet cross-section for a generic algorithm

 $\sigma_{2 \text{ jets}} = \left[d\Phi_2(k_1, k_2) \mid \mathcal{M}_0 + \mathcal{M}_{1-\text{loop}} \mid^2 J_r(k_1, k_2) \right]$

+ $d\Phi_3(k_1, k_2, k_3) | \mathcal{M}_{real} |^2 J_r(k_1, k_2, k_3)$

* and separate out the divergent (IRC) from the finite (hard)

* let's start with the NLO 2-jet cross-section for a generic algorithm

 $\sigma_{2 \text{ jets}} = \int d\Phi_2(k_1, k_2) \mid \mathcal{M}_0 + \mathcal{M}_{1-\text{loop}} \mid^2 J_r(k_1, k_2) \text{ jet definition for 2} \\ \text{and 3 particles}$

+ $\int d\Phi_3(k_1, k_2, k_3) | \mathcal{M}_{real} |^2 J_r(k_1, k_2, k_3)$

* and separate out the divergent (IRC) from the finite (hard)

* let's start with the NLO 2-jet cross-section for a generic algorithm

$$\sigma_{2 \text{ jets}} = \int d\Phi_2(k_1, k_2) \mid \mathcal{M}_0 + \mathcal{M}_{1-\text{loop}} \mid^2 J_r(k_1, k_2) \text{ jet definition for 2}$$

and 3 particles

+
$$d\Phi_3(k_1, k_2, k_3) | \mathcal{M}_{real} |^2 J_r(k_1, k_2, k_3)$$

* and separate out the divergent (IRC) from the finite (hard)

 $\sigma_{2 \text{ jets}} = \int d\Phi_2(k_1, k_2) | \mathcal{M}_0 + \mathcal{M}_{1-\text{loop}}^{\text{hard}} |^2 J_r(k_1, k_2) + \int d\Phi_3(k_1, k_2, k_3) | \mathcal{M}_{\text{real}}^{\text{hard}} |^2 J_r(k_1, k_2, k_3)$

* let's start with the NLO 2-jet cross-section for a generic algorithm

 $\sigma_{2 \text{ jets}} = \begin{bmatrix} d\Phi_2(k_1, k_2) \mid \mathcal{M}_0 + \mathcal{M}_{1-\text{loop}} \mid^2 J_r(k_1, k_2) \end{bmatrix} \text{ jet definition for 2} \\ \text{and 3 particles} \end{bmatrix}$

+ $d\Phi_3(k_1, k_2, k_3) | \mathcal{M}_{real} |^2 J_r(k_1, k_2, k_3)$

* and separate out the divergent (IRC) from the finite (hard)

 $\sigma_{2 \text{ jets}} = \int d\Phi_2(k_1, k_2) \mid \mathcal{M}_0 + \mathcal{M}_{1-\text{loop}}^{\text{hard}} \mid^2 J_r(k_1, k_2) + \int d\Phi_3(k_1, k_2, k_3) \mid \mathcal{M}_{\text{real}}^{\text{hard}} \mid^2 J_r(k_1, k_2, k_3)$

+
$$d\Phi_2(k_1, k_2) \left[2 \operatorname{Re} \mathcal{M}_0^* \mathcal{M}_{1-\operatorname{loop}}^{\operatorname{IRC}} J_r(k_1, k_2) + d\Phi_1(k_3) | \mathcal{M}_{\operatorname{real}}^{\operatorname{IRC}} |^2 J_r(k_1, k_2, k_3) \right]$$

IRC safety of Sterman-Weinberg jets

* let's go back to cone jets, at NLO we have

IRC safety of Sterman-Weinberg jets * let's go back to cone jets, at NLO we have $J_{\varepsilon,\delta}(k_1,k_2) = 1$

IRC safety of Sterman-Weinberg jets * let's go back to cone jets, at NLO we have $J_{\varepsilon,\delta}(k_1,k_2) = 1$ $J_{\varepsilon,\delta}(k_1, k_2, k_3) = \Theta\left(\min(\theta_{12}, \theta_{13}, \theta_{23}) < \delta\right)$

IRC safety of Sterman-Weinberg jets * let's go back to cone jets, at NLO we have $J_{\varepsilon,\delta}(k_1,k_2) = 1$ $J_{\varepsilon,\delta}(k_1, k_2, k_3) = \Theta\left(\min(\theta_{12}, \theta_{13}, \theta_{23}) < \delta\right)$ $+\Theta\left(\min(\theta_{12},\theta_{13},\theta_{23})>\delta\right)\Theta\left(\min(E_1,E_2,E_3)<\varepsilon\right)$

IRC safety of Sterman-Weinberg jets * let's go back to cone jets, at NLO we have $J_{\varepsilon,\delta}(k_1,k_2) = 1$ $J_{\varepsilon,\delta}(k_1, k_2, k_3) = \Theta\left(\min(\theta_{12}, \theta_{13}, \theta_{23}) < \delta\right)$ $+\Theta\left(\min(\theta_{12},\theta_{13},\theta_{23})>\delta\right)\Theta\left(\min(E_1,E_2,E_3)<\varepsilon\right)$ * it is straightforward to check that in any soft and/or collinear limit: $J_{\varepsilon,\delta}(k_1,k_2,k_3) \rightarrow 1$

- * start with a list of particles,
- * compute all distances dij and dib
- find the minimum of all dij and dib

d_{ij} (weighted) distance between i j d_{ib} external parameter or distance from the beam ...

- * start with a list of particles,
- * compute all distances dij and dib
- find the minimum of all dij and dib
- * if the minimum is a d_{ij}, recombine i and j and iterate

d_{ij} (weighted) distance between i j d_ib external parameter or distance from the beam ...

- * start with a list of particles,
- * compute all distances dij and dib
- * find the minimum of all dij and dib
- * if the minimum is a d_{ij}, recombine i and j and iterate

d_{ij} (weighted) distance between i j d_ib external parameter or distance from the beam ...

- * start with a list of particles,
- * compute all distances d_{ij} and d_iB
- find the minimum of all dij and dib
- if the minimum is a d_{ij}, recombine i and j and iterate

d_{ij} (weighted) distance between i j d_ib external parameter or distance from the beam ...

 otherwise call i a final-state jet, remove it from the list and iterate

speeding-up the algorithms

- * from combinatorics sequential recombination should scale like N³
- * an approach based on geometry (Voronoi diagrams) leads to notable improvements
- Sequential recombination algorithms could be implemented with O(N²) or even O(NInN) complexity rather than O(N³)
 Cacciari, Salam, 2006
- Cone algorithms could be implemented exactly (and therefore made IRC safe) with O(N²InN) rather than O(N 2^N) complexity Salam, Soyez, 2007

method implemented

in FastJet

JAPE and kt algorithm

* actual choice of dij determines the algorithm

$$d_{ij} = (p_i + p_j)^2 = 2E_i E_j (1 - \cos \theta_{ij})$$
$$d_{iB} = y_{\text{cut}}$$

$$l_{ij} = \min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$$

both algorithms for e+e- collisions
k_t algorithm theory friendly

 $d_{iB} = y_{\rm cut}$

JADE

V

- generic issue: problems when the resolution parameter becomes smaller as real radiation is constrained to a small (Born-like) region of phase space
- singularities still avoided but finite parts can become large (typically large logs of y_{cut})
- All-order calculations in QCD are necessary to resum these large contributions: active area of research, many theses available!
- See A. Larkoski: An unorthodox introduction to QCD

the kt algorithm the kt distance is the inverse of the QCD splitting probability

 $\frac{dP_{k\to ij}}{dE_i d\theta_{ij}} \sim \frac{\alpha_s}{\min(E_i, E_j)\theta_{ij}}$

- * the algorithm roughly inverts the QCD shower, bringing us back to the hard scattering
- * the clustering history has physical meaning
- * jets grow around soft particles, which is a problem in a noisy environment as the LHC

the generalised kt family

* actual choice of dij determines the algorithm

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$

IKC behaviour

 $\begin{array}{l} \textbf{p} = 1 & k_t \ algorithm \\ \textbf{s. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 \\ \textbf{s. D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160 \\ \textbf{new soft particle (pt \rightarrow 0) means that $d \rightarrow 0 \Rightarrow clustered first, no effect on jets \\ \end{array}$

new collinear particle ($\Delta y^2 + \Delta \Phi^2 \rightarrow 0$) means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets

p=0 Cambridge/Aachen algorithm Y. Dokshitzer, G. Leder, S. Moretti and B. Webber, JHEP 08 (1997) 001 M. Wobisch and T. Wengler, hep-ph/9907280

new soft particle ($p_t \rightarrow 0$) can be new jet of zero momentum \Rightarrow no effect on hard jets new collinear particle ($\Delta y^{2} + \Delta \Phi^{2} \rightarrow 0$) means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets

p = -1 anti- k_t algorithm

M. Cacciari, G. Salam and G. Soyez, arXiv:0802.1189

new soft particle ($p_t \rightarrow 0$) means d $\rightarrow \infty \Rightarrow$ clustered last or new zero-jet, no effect on hard jets

new collinear particle ($\Delta y^2 + \Delta \Phi^2 \rightarrow 0$) means that $d \rightarrow 0 \Rightarrow$ clustered first, no effect on jets

the anti-k+ algorithm

- * with this measure soft particles are always far away
- * jets grow around hard cores
- if no other hard particles are around the algorithm provides (ironically) perfect cones
- however, the clustering history carries little physics (re-clustering)

comparing them all

a useful cartoon

jet

a useful cartoon

jet

underlying event. (multiple parton interactions) hadronisation

pert. radiation (parton branching)

a useful cartoon

jet

underlying event (multiple parton interactions)

hadronisation

pert. radiation (parton branching)

pile-up (multiple proton interactions)

estimating pr shifts

* we can use soft emission kinematics to estimate the changes in pt from the hard parton to the measured quantities

* assume a finite coupling in the IR

PT radiation:

$$q: \langle \Delta p_t \rangle \simeq \frac{\alpha_s C_F}{\pi} p_t \ln R$$

<u>Hadronisation</u>: $q: \langle \Delta p_t \rangle \simeq -\frac{C_F}{R} \cdot 0.4 \text{ GeV}$

$\frac{\text{Underlying event:}}{q,g: \langle \Delta p_t \rangle \simeq \frac{R^2}{2} \cdot 2.5 - 15 \text{ Ge} /$

Pasgupta, Magnea, Salam (2007)

pile-up

- pile-up can deposit several tens of GeV (or even hundreds, in a heavy ion collision) into a mediumsized jet
- * it's a direct consequence of the desired high luminosity
- it hampers how ability of extracting useful information about the hard scatters

a 78-vertices event from CMS

hard jets and pile-up

- susceptibility measures how much background is picked up (jet area)
- resiliency measures how much the original jet is modified (backreaction)

hard jets and pile-up

- * susceptibility measures how much background is picked up (jet area)
- resiliency measures how much the original jet is modified (backreaction)

hard jets and pile-up

 susceptibility measures how much background is picked up (jet area)

 resiliency measures how much the original jet is modified (backreaction)

 $\Delta p_t = \rho A \pm \left(\sigma \sqrt{A} + \sigma_\rho A + \rho \sqrt{\langle A^2 \rangle - \langle A \rangle^2}\right) + \Delta p_t^{BR}$

background momentum density (per unit area)

background 'susceptibility' backreaction 'resiliency'

resiliency

- anti-k_t jets are much more resilient to changes from background immersion
- * their regular shape makes them easier to correct for detector effects

* default choice for LHC collaborations

mitigating pile-up

* Jet-based

- * Cluster the full event, determine the event-specific (p) and jet-specific (A) quantities, and subtract the relevant contamination from a given observable
- * Pros: largely unbiased subtraction
- * Cons: slow, potentially large(er) residual uncertainty
- * Examples: `jet area/median' in FastJet, GenericSubtractor for jet shapes, JetFFMoments for fragmentation functions,

* Particle-based

- Produce a reduced event, by dropping some of the particles. Cluster this reduced event, and calculate from it the observables
- * Pros: fast, often small(er) residual uncertainty
- * Cons: not natively unbiased, can depend on choice of parameters
- * Examples: ConstituentSubtractor, SoftKiller, PUPPI,

for a complete review see G. Soyez, "Pile-up mitigation at the LHC: a theorist's view (2018)

summary of lecture 1

* jets to rescue perturbation theory

* jet definitions

* resilience against non-perturbative effects

homework 1

* which of the following observables are IRC safe (assuming the jet has been selected in an IRC safe fashion)?

* the jet invariant mass

* the invariant mass of tracks in a jet

* generalised angularities (assume κ, β>0)

 $\lambda_{\kappa,\beta} = \sum_{i \in iet} \left(\frac{p_{Ti}}{p_T}\right)^{\kappa} \theta_i^{\beta}$

- show that for an event made up of two particles all gen. k_t algorithms recombine them is their azimuth-rapidity distance is less than R
- * things dramatically changes with many particles!