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Why study QCD?
• You may want to discover something new at the 

LHC: squarks, dark matter particles, …

• For example, maybe you want to discover anomalous 
couplings of the Higgs boson.

• Then QCD is part of the process and you need to 
understand how it works.
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Abstract

• Applications of QCD to experiment combine

• a particular calculation of Feynman diagrams;

• general features of the theory that enable the 
calculation to apply to the experiment.

• We will study the general features.
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Some general features of 
QCD

• Jet structure.

• Renormalization group and running coupling.

• Existence of infrared safe observables.

• Ability to isolate soft initial state physics in parton 
distribution functions.
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Along the way...

• We will study the three basic processes:

• electron-positron annihilation,

• deeply inelastic scattering,

• hard processes in hadron-hadron collisions.

• And we will learn some kinematics that “everybody 
knows.”
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Electron-positron 
annihilation and jets

Exploring the QCD final state
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Topics

• Structure of the cross section.

• General nature of the singularities.

• Null-plane coordinates.

• Space-time picture.

• Infrared-safe observables.
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• Soft singularity:
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Cross section for e+e-→3 partons

• Collinear singularity:



• M contains a factor 1/(p1 + p3)2.

(p1 + p3)2 = 2E1E3(1� cos �13)

• This is singular for �13 ⇥ 0
and for E3 � 0.

General nature of the 
singularities

• The numerator has a factor �13 for small �13.

• So
|M|2 ⇥ 1

E2
3�2

13

, �13 � 0 or E3 � 0
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• This gives logarithmically divergent integrals
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This structure is general for tree graphs.

• Suppose that partons 1 
and 3 become collinear.

• Then

splitting amplitude

Mm+1 �
�
Mm

⇥
{1,3} on-shell

spinors
(p1 + p3)2

• This is how one starts to define a parton shower.
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This suggests the following structure of events:

Partons split with ever 
smaller angles

Sometimes a soft gluon is 
emitted at a wide angle

• The corresponding picture for the final state 
particles is

• These sprays of particles are called jets.
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Jets exist in nature...



Null-plane coordinates

Use pµ = (p+, p�, p1, p2) where

p± = (p0 ± p3)/
⇥

2

• Often one chooses the axes so
that a particle or group of
particles of interest have large
p+ and small p� and pT .
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Some properties of null-plane coordinates

p± = (p0 ± p3)/
⇥

2

• Covariant square

• For a particle on its mass shell
p+ > 0 , p� > 0

p� =
p2

T + m2

2p+

p2 = 2p+p� � p2
T

• A particle with limited pT and large p+ has small p�.

• Recall 
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• Integration over the mass shell:

(2�)�3

�
d3⌃p

2
⇥

⌃p 2 + m2
· · · = (2�)�3

�
d2pT

� ⇥

0

dp+

2p+
· · · .

• Fourier transform:

p · x = p+x� + p�x+ � pT · xT

• so x+ is Fourier conjugate to p�

and x� is Fourier conjugate to p+

(Sorry.)
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Boosts

v+
new = e�v+

old

• So

is invariant.

p · x = p+x� + p�x+ � pT · xT

v�new = e��v�old
vT,new = vT,old
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Space-time picture of the 
singularities

• Write the “amputated” diagram in coordinate space.

• Define pµ
1 + pµ

3 = kµ.

• Use coordinates with k+

large and kT = 0.

• Then k2 = 2k+k� becomes small when k� becomes
small. (Collinear or soft limit, m = 0.)

k� =
p2

3

2p+
1

+
p2

3

2p+
3

18



Consider the Fourier transform.

• The singularity corresponds to large k+ and small k�.

• Contributing positions have large x+ and small x�.

SF (k) =
�

dx+dx�dx exp(i[k+x� + k�x+ � k · x]) SF (x).
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• Thus in the picture

the first splittings happen relatively early, 
the next ones are much later.

• For example, 0.002 fm, 0.02 fm, 0.2 fm ...
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• Beware...

• We will find that perturbative QCD cannot predict 
long time physics very well.

• But the detector is a long distance away.

• How can we have any sound predictions?
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Infrared safe observables
• Definition of an observable
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• For a physical event, infrared safety means that the 
actual event gives approximately the same result as 
when the hadrons in a jet are combined to make a 
few “parton jets”.
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• For a calculated cross section, the infrared infinities 
cancel.
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• The simplest example of an infrared safe observable 
in electron positron annihilation is the total cross 
section.
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A more interesting example is the thrust 
distribution             .d�/dT

• Contribution from a particle with ⇥p = 0 drops out.

• Replacing one parton by two collinear partons
does not change T .

27



28



29

Quantitative measure of infrared safety          



30



31



32



Review
• QCD Feynman diagrams are singular when any two 

partons become collinear or a gluon becomes soft.

• This property, with “singular” modified to “big” is 
the basis for parton shower Monte Carlos.

• Physically, it means that jets appear.

• The small virtuality splittings happen late.

• We can look at the small time physics by using 
infrared safe observables.

• We can define a scale for an infrared safe observable.
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Renormalization and the 
running coupling

How quantum field theory hides the truth
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Topics

• What renormalization does.

• The running coupling.

• The choice of scale.

• Beyond the Standard Model.
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What renormalization does

• There are quantum fluctuations at very small 
distance scales.

• They have a big effect.

• Renormalization accounts for their effect while 
eliminating the details below some scale.

36



Use MS renormalization with renormalization scale µ:

• Physics of time scales
|t|⇥ 1/µ removed from
perturbative calculation.

• E�ect of small time
physics accounted for
by adjusting value of the
coupling�: �s = �s(µ).

� This is not exactly the truth. There are also running masses m(µ) and there are µ
dependent adjustments to the normalizations of the field operators. In addition,
renormalization by dimensional regularization and minimal subtraction is not
exactly the same as imposing a cuto⇥ |�x| > 1/µ.
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The running coupling
• We account for time scales much smaller than 1/µ

(but bigger than a cuto� M at the “GUT scale”)
by using the running coupling.

• This sums the e�ects of short time fluctuations
of the fields.

log(�t)
log(1/µ)log(1/M)

renormalization 
group

fixed order 
calculation
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Result of the one loop renormalization 
group equation:

�s(µ) ⇤ �s(M)� (⇥0/4⌅) log(µ2/M2) �2
s(M)

+(⇥0/4⌅)2 log2(µ2/M2) �3
s(M) + · · ·

=
�s(M)

1 + (⇥0/4⌅)�s(M) log(µ2/M2)

=
4⌅

⇥0 log(µ2/�2)

=
�s(MZ)

1 + (⇥0/4⌅)�s(MZ) log(µ2/M2
Z)
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The choice of scale
• Our example: e+e� ⇥ �⇥ ⇥ hadrons
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• The coe�cients depend on µ.
• �s(µ) depends on µ.

• The “exact” � does not depend on µ.

• The more terms we have, the less µ dependence there is.

d

d log µ

N�

n=1

cn(µ) �s(µ)n � O(�s(µ)N+1)
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• �1 includes one term.

• �2 includes two terms.

• Possible choice: “principle of minimal sensitivity” point µ̂
where �2 is flat.

• Error band estimated using µ = 2µ̂ or µ = µ̂/2.
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• One more order.
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• Magnified view.

• Were the value and the error estimate about 
right?

-3 -2 -1 0 1 2

0.042

0.044

0.046

0.048

0.05

45



Beyond the Standard Model

• If we knew about new very heavy particles and 
interactions, we should put that into loop graphs.

• The new physics then affects predictions for lower 
energies.
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• Unfortunately, the effect of the new physics is to 
change the value of the couplings and masses of the 
Standard Model.

• That is, the new physics provides the initial 
conditions for the renormalization group equations.

log(�t)
log(1/µ)log(1/M)

renormalization 
group

fixed order 
calculation
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• A really good theory would predict the couplings and 
masses of the standard model.

• So far, that hasn’t happened.

• Except for that possibility, and one more, the secrets 
of very short distance physics are pretty well hidden 
from us until we have enough energy to directly 
probe the small times.
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�L =
g̃2

M2
⇥̄�µ⇥ ⇥�µ⇥
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• An example is the cross section for jet production at 
a hadron collider:

• These data were eventually explained by something 
else, but illustrate what to look for.

data� theory
theory
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Review

• Loop graphs “know” about physics at very small time 
scales.

• We remove these effects below a time scale        from 
perturbative graphs and incorporate them into the 
couplings, eg.          .

• One chooses    to be on the order of the physical 
scale of the problem.

• The effects of very small time scale physics are 
mostly hidden.

1/µ

µ

�s(µ)
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Deeply inelastic scattering
The effect of the initial state
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Topics

• Kinematics of deeply inelastic scattering (DIS).

• The space-time picture.

• Small x.

• Partons.

• The factored cross section.
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Kinematics of DIS

• The process is l + h⇥ l� + X.

Q2 = �q2

xbj =
Q2

2P · q

W 2 = (P + q)2 = m2
h +

1� x

x
Q2

y =
P · q

P · k
.
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Structure functions

Lµ⇥ =
1
2
Tr (k · � �µk� · � �⇥) .

d⇥ =
4�2

s

d3�k�

2|�k�|
1

(q2 �M2)2
Lµ⇥(k, q) Wµ⇥(P, q).
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The structure of Wµ⇥ :

The functions F1, F2 and F3 are the structure functions.

d⇥ =
4�2

s

d3�k�

2|�k�|
1

(q2 �M2)2
Lµ⇥(k, q) Wµ⇥(P, q).

Wµ⇤ = �
�

gµ⇤ �
qµq⇤

q2

⇥
F1(x, Q2)

+
�

Pµ � qµ
P · q

q2

⇥ �
P⇤ � q⇤

P · q

q2

⇥
1

P · q
F2(x, Q2)

�i�µ⇤�⌅P�q⌅ 1
P · q

F3(x,Q2).
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Space-time picture of DIS

• A convenient reference frame is

(q+, q�, q) =
1⇥
2

(�Q,Q,0)

(P+, P�,P ) � 1⇥
2

�
Q

x
,
xm2

h

Q
,0

⇥

• Hadron momentum is big; momentum transfer 
is big.
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• Picture for a fast moving hadron is Lorentz 
transformation from rest frame picture.

• Separations �xµ

between interactions:

e� =
P+

P+
rest

=
Q

mx

�x+ ⇥ 1
m
� Q

mx
=

Q

m2x

�x� ⇥ 1
m
� mx

Q
=

x

Q
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• The hadron meets the virtual photon.

• Virtual photon has q� ⇥ Q so
its interaction takes place over

�x+ � 1/Q

• But interactions in the proton
happen at a scale

• so the “partons” in the hadron
are e�ectively free as seen by
the virtual photon.

�x+ � Q/(m2x)
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Factored cross section

• This picture gives

fa/h(⇥, µ) d⇥ = probability to find a parton
with flavor a = g, u, ū, d, . . . ,
in hadron h,
carrying momentum fraction ⇥ = p+

i /p+.

d�̂a/dE� d⇥� = cross section for scattering that parton.

d⇤

dE� d⌅� �
⇥ 1

0
d⇥

�

a

fa/h(⇥, µ)
d⇤̂a(µ)
dE� d⌅� +O(m/Q)

60



Kinematics of the leading order diagram

�P+ + q+ = 0

P+ =
Q

x
�

2

q+ = � Q⇥
2

� = x

So

61



• Consequence of � = x at lowest order:

• At higher orders, this is more complicated:

F2(x,Q2) �
�

a

Q2
a x fa/h(x, µ) +O(�s) +O(m/Q)
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The hard scattering cross section

To calculate d⇥̂a(µ)/dE� d⇤� use diagrams like

leading order higher order

d⇤

dE� d⌅� �
⇥ 1

0
d⇥

�

a

fa/h(⇥, µ)
d⇤̂a(µ)
dE� d⌅� +O(m/Q)
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Space-time picture at small x

• Size of proton

�y �
�

Q

xm2
,

x

Q
,

1
m

,
1
m

⇥

• For very small x, the point where the quark is
destroyed is far outside the normal size of the proton.
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Breit frame proton rest 
frame

• In the proton rest frame, the photon vertex is first.

• This gives the dipole picture.
65

• How this looks depends on the reference frame.



The dipole picture in the proton rest frame

• The virtual photon creates a quark-antiquark dipole 
that shoots through the proton.

• The dipole can develop further.

• Whatever happens, it has more to do with the 
structure of QCD than with the structure of the 
proton.
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Partons and renormalization
What the proton looks like depends on the resolution of 

your experiment

67



Topics

• The factorization scale.

• The definition of the parton distribution functions.

• Evolution of the parton distribution functions.

• Fitting the parton distribution functions.
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The factorization scale

• Thus we regarded the partons as “frozen.”

• But look at this graph.

• Integration over k maps to integration over �x+

• So we were wrong.

• 1/Q � �x+ � Q/(xm2).

• We argued that �x+ ⇥ Q/(xm2)⇤ 1/Q.
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perturbative 
calculation

parton distribution 
function

log(1/Q) log(1/µF)
log(�x+)

• We call µF the factorization scale.

• Solution: divide up
the integration region.

d⇤

dE� d⌅� �
⇥ 1

0
d⇥

�

a

fa/h(⇥, µF)
d⇤̂a(µF, µ)
dE� d⌅� +O(m/Q)

• Both fa/h(⇥, µF) and d⇤̂a(µF, µ) depend on µF.
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d⇤

dE� d⌅� �
⇥ 1

0
d⇥

�

a

fa/h(⇥, µF)
d⇤̂a(µF, µ)
dE� d⌅� +O(m/Q)

• Also, d⇥̂a(µF, µ) depends on the renormalization scale µ.

• Both fa/h(⇥, µF) and d⇤̂a(µF, µ) depend on µF.

• The higher the order of perturbation theory that we use
the smaller is the dependence on the scales.

• This applies also in hadron-hadron collisions.

• As an example, look at the one jet inclusive cross section

• The example is for p-p̄ collisions at
⇥

s = 1800 GeV.

d�

dET dy

• ET = jet transverse momentum; y = jet rapidity = 0.
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f(µ, µF) =
d⇥

dET dy
f(µ, µF)

f(ET /2, ET /2)

• Plot

• Versus Nuv and Nco, where

µ = ET /2� 2Nuv µF = ET /2� 2Nco

ET = 100 GeV ET = 500 GeV 72



Parton distribution functions
• They are defined as proton matrix elements of a 

certain operator.

• For quarks,

• For gluons, a similar definition.
• Renormalize with the so-called MS prescription

with scale µF .

fi/h(⇤, µF ) =
1
2

�
dy�

2⌅
ei�p+y��p|⇧̄i(0, y�,0)�+F⇧i(0)|p⇥
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The definition in pictures.

DIS quark distribution 
function

fi/h(⇤, µF ) =
1
2

�
dy�

2⌅
ei�p+y��p|⇧̄i(0, y�,0)�+F⇧i(0)|p⇥
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• The definition entails certain sum rules, eg.

�

a

⇥
dx xfa/p(x, µ) = 1
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• Roughly speaking, this means that we
integrate over the transverse momentum of a
parton that is part of the proton up to a limit,

k2
T < µ2

F

• Thus the parton distribution function
depends on µF .
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Evolution of the parton 
distribution functions

d

d log µF
fa/h(x, µF ) =

�

b

⇥ 1

x

d⇤

⇤
Pab(x/⇤,�s(µF )) fb/h(⇤, µF )

Pab(x/⇤,�s(µF )) = P (1)
ab (x/⇤)

�s(µF )
⌅

+P (2)
ab (x/⇤)

�
�s(µF )

⌅

⇥2

+ · · ·

• This is called the Altarelli-Parisi equation or the 
DGLAP equation.
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d

d log µF
fa/h(x, µF ) =

�

b

⇥ 1

x

d⇤

⇤
Pab(x/⇤,�s(µF )) fb/h(⇤, µF )

• The physical effect that we account for is 
fluctuations within fluctuations ... as we look with a 
more powerful “microscope.”
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Fitting the parton 
distribution functions

• For DIS, we have

d⇤

dE� d⌅� �
⇥ 1

0
d⇥

�

a

fa/h(⇥, µ)
d⇤̂a(µ)
dE� d⌅� +O(m/Q)

• For hadron-hadron collisions, we have similar formulas 
with two parton distribution functions.

• The parton distribution functions cannot be 
accurately calculated.

• But given enough data, we can fit them.
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• What we need to fit is fa(x, µ0) at some starting
scale µ0.

• This fixes fa(x, µ) for any other scale µ > µ0.

• Then

d⇤

dE� d⌅� �
⇥ 1

0
d⇥

�

a

fa/h(⇥, µ)
d⇤̂a(µ)
dE� d⌅� +O(m/Q)

gives the observed cross section.

• Just adjust fa(x, µ0) until we get all of the observed
cross sections right.

• The fact that this works means that the theory
is right.
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Review

• Parton distribution functions have a definition that 
is independent of any particular process.

• The functions obey a simple evolution equation that 
describes the effect of changing resolution

• The parton distribution functions appear in any 
short distance process with one or two hadrons in 
the initial state.

• They are fit to experimental results.
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Hadron-hadron collisions
Initial state, hard scattering, final state
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Topics

• Kinematics: rapidity.

• Drell-Yan processes.

• New particle production.

• Jets.
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Rapidity
• Rapidity y (or �) is useful for hadron-hadron collisions.

• Choose c.m. frame with z-axis along the beam direction.

• Consider the production of a massive particle
like a Z-boson, with momentum q = (q+, q�, qT ).

y =
1
2

log
�

q+

q�

⇥

qµ = (ey
�

(q2
T + M2)/2, e�y

�
(q2

T + M2)/2, qT )
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q+ � e�q+, q� � e��q�, qT � qT

y =
1
2

log
�

q+

q�

⇥

• So

• Property under z-boosts:

• Simple behavior under z-boosts is important because
the c.m. frame is not so special.

y � y + �
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• For a massless particle this becomes

y =
1
2

log
�

q+

q�

⇥

y = � log (tan(�/2))

Pseudorapidity

• If the particle is not quite massless, � log(tan(�/2))
is called the pseudorapidity.
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Virtual photon, Z, or W
production

A + B � Z + X

xA = ey
�

M2/s xB = e�y
�

M2/s

• Consider d�/dy for

d⇤

dy
=

�

a,b

⇥ 1

xA

d⇥A

⇥ 1

xB

d⇥B fa/A(⇥A, µ) fb/B(⇥B , µ)
d⇤̂ab(µ)

dy

+O(m/M)

• Factored form of cross section
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d⇤

dy
=

�

a,b

⇥ 1

xA

d⇥A

⇥ 1

xB

d⇥B fa/A(⇥A, µ) fb/B(⇥B , µ)
d⇤̂ab(µ)

dy

+O(m/M)

• The factored formula has power
suppressed corrections.

• When d⇥̂ab/dy is evaluated at order
�n

s , there are also corrections of
order �n+1

s .

• We integrate over qT . The Z boson has mostly q2
T � M2.
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Discussion of factorization
d⇤

dy
=

�

a,b

⇥ 1

xA

d⇥A

⇥ 1

xB

d⇥B fa/A(⇥A, µ) fb/B(⇥B , µ)
d⇤̂ab(µ)

dy

+O(m/M)

• This is not obvious.

• Need unitarity, causality, gauge invariance.
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Heavy particle production
• For instance to make a squark and an antisquark,

• The virtuality of the exchanged squark is at least M2.

• The large scale is the squark mass, M .

⇤T �
�

a,b

⇥ 1

0
d⇥A

⇥ 1

0
d⇥B fa/A(⇥A, µ) fb/B(⇥B , µ) ⇤̂ab

T (µ).
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Jet production
• We can measure – and calculate – a jet cross section, 

say the one jet inclusive cross section.

d⇤

dPT dy
�

�

a,b

⇥ 1

0
d⇥A

⇥ 1

0
d⇥B fa/A(⇥A, µ) fb/B(⇥B , µ)

d⇤̂ab(µ)
dPT dy

.
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What is a jet?

• It is a spray of hadrons. But we need 
a more precise definition.

• The definition needs to be infrared 
safe.

• One traditional definition involves 
cones.

• The other forms jets by successive 
combination of hadrons.
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• Start with a list of protojets.
• Each hadron could be a protojet.

• End with a list of jets.
• Most of the “jets” will have very low pT .
• We will be interested in the high pT jets.

The “kT ” jet definition.

• There is a parameter R that is similar
to the cone size in a cone definition.
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1. For each pair of protojets define

For each protojet define

2. Find the smallest of all the dij and the di. Call it dmin.

3. If dmin is a dij , merge protojets i and j into a new
protojet k with

di = p2
T,i

5. If protojets remain, go to 1.

4. If dmin is a di, then protojet i is “not mergable.”
Remove it from the list of protojets and add it to
the list of jets.
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�

pT

R

�

pT

dij = min(p2
T,i, p

2
T,j) [(�i � �j)2 + (⇥i � ⇥j)2]/R2

di = p2
T,i

Example
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Review

• The theory can be reliable for processes with a single 
short distance scale (high momentum scale).

• Very heavy particles produced.

• High transverse momentum particles produced.

• We need an infrared-safe observable.

• Typically, this involves (suitably defined) jets.
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• For such observables, the cross section factors:

d⇤

dy
=

�

a,b

⇥ 1

xA

d⇥A

⇥ 1

xB

d⇥B fa/A(⇥A, µ) fb/B(⇥B , µ)
d⇤̂ab(µ)

dy

+O(m/M)
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Summing large logarithms
What happens when there are two scales

98



Summing logs
• For an infrared-safe process with one hard scale, the theory 

is simple.

• If there are two hard scales, the theory is more complicated.

• Consider A + B ⇥ Z + X

• If PT ⇥MZ , the theory is simple.

• If 1 GeV⇥ PT ⇥MZ , there are two large scales.

• We need to sum terms of order �n
s log(MZ/PT )2n�1.

• In many cases like this, there are known formulas
for summing the logs.
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Recall the thrust distribution             .d�/dT
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101

Note the log.
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Quantitative measure of infrared safety          



Parton showers
Factorization at multiple scales

103



• I will outline some ideas behind the organization of “hardness 
ordered” shower generators.

• This includes Pythia and Sherpa (as well as a newer program, 
Deductor).

• Herwig is “angle ordered.” That is sensible, but a little more 
complicated to explain.
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The physical basis for parton showers

• Suppose that partons 1 
and 3 become collinear.

• Then

splitting amplitude

• This is how one starts to define a parton shower.
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This suggests the following structure of events:

Partons split with ever 
smaller angles

Sometimes a soft gluon is 
emitted at a wide angle

• Parton shower generators simulate this.
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• First approximation is just the 
hard interaction. 

• Softer interactions not resolved by 
imagined observations.

• So softer interactions are 
integrated out.

• Then we increase the resolution...

Parton showers and factorization
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Real time picture Shower time picture
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split

exponentiate the probability of not splitting

this is the 
Sudakov factor

110

don’t split
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Quantum interference
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Hadronization

• When the hardness scale reaches a GeV or so, we can’t 
trust perturbation theory.

• So we have to turn the parton shower off.

• Pythia, Sherpa, and Herwig provide a non-perturbative 
model of how to make hadrons out of the partons.
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Review

• Parton shower generators are based on lowest order 
perturbation theory, so they are not as precise as 
next-to-leading order (or NNLO) calculations.

• In favorable cases they can sum large logarithms.

• They produce whole events, so they are very 
important practically.
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