

Mon, 4th March

12:15 pm Q	Opening
12:30 pm	Synthesis planning, mechanistic analysis and discovery of new reaction classes in the age of computers Bartosz Grzybowski, UNIST
1:20 pm	Efficient Quantum Chemistry Methods Stefan Grimme ML, University of Bonn
2:10 pm	Coffee break
2:45 pm	Poster session
4:45 pm	Machine learning for traversing chemical structure space Julia Westermayr, University of Leipzig
5:35 pm	How to See Behind the Dark Rift of Chemical Reaction Space – A Story of Byproducts and Analytical Chemistry Philipp Pflüger, ChemInnovation
6:05 pm	Bringing ML to the Lab: Towards Autonomous Experimentation Felix Strieth-Kalthoff, University of Toronto

TUE, 5TH MARCH

8:30 am	Chemistry using Computation, Machine Learning and Robots Andy Cooper, University of Liverpool
9:20 am	Making Chemical synthesis and discovery universal Leroy Cronin, University of Glasgow
10:10 am	Coffee break
10:40 am	Applying ML/AI to drug design in a pharmaceutical setting Ola Engkvist, AstraZeneca
11:30 am	How NFDI4Chem's infrastructure and tools can support ML-initiatives Nicole Jung, KIT
12:20 pm	Lunch
1:50 pm	Artificial Intelligence for Accelerated Chemical Synthesis Philippe Schwaller, EPFL
2:40 pm	Hybrid AI for Drug Discovery Andrea Volkamer, Saarland University
3:30 pm	Coffee break
4:00 pm	Poster session

WED, 6th MARCH

8:30 am Fully Quantum (Bio) Molecular Simulations: Dream or Reality?

Alexandre Tkatchenko, University of Luxembourg

9:20 am Machine learning for drug discovery in low-data regimes *Francesca Grisoni, TU Eindhoven*

10:10 am 🗘 Coffee break

10:40 am Remembering the lab in computational materials discovery

11:30 am Self-driving laboratories: A report from the trenches Alán Aspuru-Guzik, University of Toronto

12:20 pm O Closing remarks

POSTER SESSION MON, 4TH MARCH (2:45 PM - 4:30PM)

- P1: ML/MM simulation of metal-organic frameworks in LAMMPS
 Niklas Kappel
- P3: Machine-learning for data-driven protein engineering

 Mehdi D. Davari
- P5: Exploring tailored Ru-triphos catalysts for hydrogenation reactions by combination of experimental, computational and machine learning techniques

 Angelina Schreiber
- P7: Synthesis Rebalancing Framework Klaus Weinbauer
- P9: Preference-Learning for De Novo Drug Design Janosch Menke
- P11: Collaborative Development of Machine Learned Potentials for Ionic Liquids Fabian Zills
- P13: Revolutionizing Molecular Docking: A Comprehensive Virtual Screening Analysis of the Colchicine Binding Site

 Tieu Long Phan
- P15: Al-Empowered Universal Workflow for Molecular Design of Performant Photoswitches

 Robert Strothmann
- P17: Desymmetrization of meso-Anhydrides Jan Marcel Metzler
- P19: Self-Organizing Maps in Drug Discovery Revisited Johannes Kaminski

- P21: Multi-fidelity, Active Learning Strategies for Exciton Transfer Among Adsorbed Molecules Matthias Holzenkamp
- P23: Virtual Drug Screening in the Chemical Space Accessible by Chemical Synthesis

 Fabian Liessmann
- P25: Machine learning guided multi-objective optimization of a stereoconvergent nickel-catalyzed reaction to access trisubstituted alkenes

 Daniel Min
- P27: DoGSite3Scorer: Explainable Binding Site Druggability Predictions
 Tobias Harren
- P29: Enabling OF-DFT with Machine Learning Tobias Kaczun
- P31: Prediction of 1H and 13C NMR Chemical Shifts of Transition Metal Complexes Using Machine Learning

 Jyothika Pillay
- P33: Machine learning potentials for molecular dynamics simulations of deep eutectic systems

 Omid Shayestehpour
- P35: A deep learning approach to study translatability of molecular fingerprints Debanjan Rana
- P37: CBS in the Age of Machine Learning Oliver Pereira

- P39: Predicting the reactivity of acyclic silylenes and germylenes in hydrogen activation

 Henning Remm
- P41: Machine-Driven Exploration of Electrostatics for Highly Charged Biopolymers in confined environments

 Horacio V. Guzman
- P43: Polymer fingerprint decoding of polymeric structures for Machine learning

 Yannik Köster
- P45: Explainable Methods for Graph Neural Networks with Application to Chemistry

 Ali Can Kara
- P47: Utilizing Machine Learning for the Approximation of Hessian Matrices based on GFN2-xTB derived Features

 Gereon Feldmann
- P49: From Local Atomic Environments to Molecular Information Entropy

 Alexander Croy

POSTERSESSION TUE, 5TH MARCH (4:00 PM - 5:45PM)

- P2: Modern Experiment Design for Protein Design Mojmir Mutny
- P4: Machine Learning for Developing and Understanding Asymmetric 3d Metal-Catalyzed C-H Activations

 Philipp Boos
- P6: Multifidelity Machine Learning for Quantum Chemistry
 Vivin Vinod
- P8: Expert-based machine learning model for docking evaluation

 Polina Oleneva
- P10: Molecular Machine Learning via Efficient Quantum Chemistry Methods Development and Application

 Marcel Mueller
- P12: Predicting the biochemical activities of unidentified chemicals from MS2 spectra to pinpoint potential toxic agents

 Ida Rahu
- P14: Explainability in Al-Driven Early-Phase Drug Discovery Bridging Machine Learning and Matched Molecular Pair Analysis by Network Balance Scaling

 Malte Holmer
- P16: Prediction of Activity Coefficients with Hybrid GE Models

 Dominik Gond
- P18: Estimation of hydrogen atom transfer reaction barriers in peptides by learning full radical potential energy surface

 Marlen Neubert
- P20: Reaction-Agnostic Featurization of Bidentate Ligands for Bayesian Ridge Regression of Enantioselectivity Alexandre Schoepfer
- P22: Explainable AI for Graph Neural Network Applications in Computational Drug Discovery

 Malte Laurids Modlich
- P24: Accelerated First-Principles Exploration of Structure and Reactivity in Graphene Oxide

 Zakariya El-Machachi

- P26: Investigating charge densities of electronic structure methods

 Moritz Gubler
- P28: Machine learning for faster discovery and adaptation of oxidases for challenging chemical reactions

 Lilly Eger
- P30: Advanced Learning Strategies for Machine Learned Potentials Moritz Schäfer
- P32: Towards accelerated closed-loop discovery of porous liquids

 Austin Mroz
- P34: Synthetically Accessible Fragment Space Extensions by Machine Learning-Based Approaches (SAVE)

 Malte Korn
- P36: CIn-silico generated reagents for detection of pesticides using mass spectrometry: An out-of-distribution task

 Henrik Hupatz
- P38: EnTdecker A machine learning-based platform for guiding substrate discovery in energy transfer catalysis

 Jan Spies
- P40: Deep interactome learning for de novo drug design

 Kenneth Atz
- P42: MolBar: A Molecular Identifier for Inorganic and Organic Molecules with Full Support of Stereoisomerism

 Nils van Staalduinen
- P44: Bayesian Optimisation to Efficiently discover large molecules for organic photovoltaic application

 Mohammed Azzouzi
- P46: Reactivity prediction of highly flexible catalysts using conformationally enriched machine learning

 Stefan Schmid
- P48: Uncertainty-Aware Genetic Optimization for the Discovery of Singlet Fission Materials

 Luca Schaufelberger