The (de)wetting of e.g. polymer-coated surfaces with various liquids is of fundamental importance in equilibrium and molecular dynamics in confined mesoscale media and is also vital in many materials and applications. In particular, the response of switchable polymer layers to an externally applied thermal, optical, electrical or chemical stimulus causes alternation of local properties, in...
We investigate the behaviour of liquid drops on soft viscoelastic substrates employing mesoscopic and macroscopic models as well as experiments.
First we introduce a simple mesoscopic gradient dynamics model and show that it recovers the known double-transition in contact angles with
increasing softness and that it is well suited to study multi-drop problems like the dependence of drop...
In the last few years a lot of studies have shown that by contact/slide electrification between water droplets and hydrophobic surfaces, it is possible to generate electricity in an environmentally friendly way. In the first applications LEDs could operate in this way[1] The physical processes are still being discussed today. To extend the understanding Stetten et al.[2] have established an...
We present a highly accurate extended discontinuous Galerkin method (XDG) for the simulation of
multiphase problems involving three-phase contact lines on a flexible solid. We will show results of a simulation of a water droplet sitting on a silicone-gel, utilizing Navier slip boundary conditions on the interface and Young's equation at the three-phase contact line. Characteristically,...
When a droplet is resting on a soft surface, the capillary forces deform the surface into a sharp wetting ridge. The amplitude of the wetting ridge is determined by elasto-capillary length, but the angles by which the interfaces meet at the ridge tip only depend on the balance of surface tensions, the so-called Neumann balance. For moving contact lines, dissipation in the wetting ridge leads...
The design of open surface microfluidics that enables orthogonal control of liquid mobility and chemical composition is crucial for devising the next generation of microfluidic platforms that will find use in applications across chemical, environmental, and biomedical fields. To achieve these functionalities, extensive studies have demonstrated stimuli-responsive liquid mobility on open...
We present a a simple model, derived from basic thermodynamic principles, for active polar free-surface droplets to identify a mechanism of motility in the context of cell crawling. Namely, active stresses drive drop motion through spatial variations of polarization strength. This robustly induces parity-symmetry breaking and motility even for liquid ridges (2D drops) and adds to splay- and...
In this study we are interested in Polystyrene liquid droplets in equilibrium on PDMS elastic solid substrates in the limit of the electrocapillary length, and consequently to the ratio between the surface tensions and the elasticity of the substrates. An experimental analysis using Atomic Force Microscopy of the different parameters constituting the shape of micron-sized droplets in both the...
Despite many experimental and theoretical studies, it is still impossible to predict dissipative forces, which act against the gravitational forces of drops sliding down an inclined plane. The dissipative forces, which resist drop motion, can be termed “friction force". In this work, we measured the velocity (U), width (w), length, advancing contact angle (θ_a), and receding contact angle...
Thin liquid films are important for many microfluidic applications such as printing or coating of e.g. printableelectronics or photovoltaic cells where a evenly spread thin film of certain properties is of utmost importance as wellas so called lab-on-a-chip devices. In biophysics stable thin films play an important role in tear film on eyes or thelining of lungs. On a larger...
The dynamics of membranes, shells, and capsules in fluid flow has become an active research area in
computational physics and computational biology. The small thickness of these elastic materials enables
their efficient approximation as a hypersurface, which exhibits an elastic response to in-plane bending and out-of-plane stretching deformations. If such a closed thin shell is filled with...
Droplets are set in motion on substrates with a spatio-temporal wettability pattern as generated, for example, on light-switchable surfaces. To study such cases, we implement the boundary-element method to solve the governing Stokes equations for the fluid flow field inside and on the surface of a droplet and supplement it by Cox–Voinov friction for the dynamics of the contact line. One...
A solid, withdrawn from a wetting liquid bath, entrains a thin liquid film. This simple process, first described by Landau, Levich, and Derjaguin (LLD), is commonly observed in everyday life. It also plays a central role in liquid capture by animals, and is widely used for surface-coating purposes in industry. Motivated by the emerging interest in the mechanics of very soft materials, and in...
Slide electrification is a spontaneous charge separation between a substrate and a sliding drop. Here, we describe this effect in terms of a voltage generated at the three-phase contact line. This voltage is on the order of 0.2-2 kV and moves charges between the drop and the substrate. We model this system by a surface- and drop capacitor connected to the voltage source of the moving...