Sprecher
Beschreibung
The dynamics of a droplet deposited on a porous substrate is a combination of three phenomena: spreading, imbibition and evaporation. Here we present a study on the interactions of droplets on nanoporous silicon prepared by electrochemical etching as a function of time. The evolution of the droplet volume is analyzed theoretically and experimentally considering the evaporation and the imbibition of the liquid into the porous substrate. Water is employed to illustrate the case of an evaporation-dominated regime [1]. For an imbibition-dominated regime squalane is employed. The very low vapor pressure of this fluid allows for the analysis of the imbibition process of a droplet into a porous substrate without the contribution of evaporation. The agreement between the experimental data and the theoretical predictions deepens the understanding of the structure of HF-etched porous silicon substrates and provides new insights into the fundamentals of fluid transport in nanoporous media.