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Introduction
@00

Motivation: why saturation is relevant at Hard Probes?

@ We are all interested in QCD: consistent high energy limit?

o Froissart—-Martin bound: o¢(s) < g In?(s) as s — oo

e Saturation paradigm: non-linear gluon recombination effects tame the growth of the
gluon distribution in proton and nuclei.

@ Initial conditions in heavy-ion collisions depend on saturation physics.
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Introduction
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Disclaimer: a theory biased overview on saturation

but synergy with experiments is crucial

@ Since the observation of geometrical scaling in HERA data...
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@ ... recent hints for saturation effects in pA collision at RHIC.

@ Saturation is at the heart of the EIC Physics Program.

@ Saturation physics at RHIC and at the LHC: see talks on Monday and during the week!
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Outline

(1) New observables sensitive to saturation.

(2) Precision calculation in the saturation framework.

(3) Selected topics about the connection between saturation and AA physics.
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New observables in ep and eA for
saturation physics
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New observables
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Saturation physics in a nutshell

@ DIS at small xg; = Q%/(2P - q) < high energy s — oo
limit for fixed Q2.

@ Dipole picture of DIS: interaction between a gg dipole and
the dense gluon field of the target.

@ Large occupancy of gluons = multiple scatterings and
unitarization of the cross-section.

@ Total DIS cross-section at small-x:

1
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0
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New observables
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Saturation physics in a nutshell

@ Total DIS cross-section at small-x:
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@ Successful to describe HERA data. r (Gev)

@ Total DIS cross-section sensitive to saturation when
Q?~1/r? <Q2=0(0.1+1) GeV2.

@ But NP contamination for semi-hard Q2.




New observables
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Interest of semi-inclusive processes: back-to-back dijets

@ More than one transverse scale! For
back-to-back dijet: P, > K|

@ P, hard, K| ~ Qs semi-hard

@ Imprint of saturation on final state
correlations.

@ But: soft gluon radiation effects spoil this
nice picture.

Ideal probe

Semi-inclusive observables with a hard scale,
sensitive to Qs through final state correlations
not plagued by Sudakov effect.
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New observables
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Diffraction in DIS: example of exclusive dijet production

@ Diffractive events probes the strong scattering regime.

@ Interesting opportunities if one measures final states correlations for P, ~ Q.
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= P, =1 GeV in this plot! Challenging to measure.

@ What about going to higher P, ? Problem: higher twist cross-section = tiny cross-section
at large P, >> Qs (color transparency).
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New observables
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2+1 diffractive jet production

@ Hard P, > Qs dijet + 1 semi-hard gluon jet K; ~ Qs gives the dominant contribution to
dijet diffractive events at large P, .

@ An O(as) effect but leading twist!

@ Strong sensitivity to saturation: effective gg dipole interacts strongly with the target.

IMNl/P¢<< 1/Qs

Ry~ 1/K| ~1/Q,

e
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New observables
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2+1 diffractive jet production

@ Admits TMD factorization at leading order.
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@ UGD counts the number of gluon with a given x in the Pomeron.

@ Fast decrease KI4 of the Pomeron UGD at large K| = maximal sensitivity to Qs, even
after integrating over K| to remove Sudakov effects.
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New observables
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Nucleon energy-energy correlators

@ Many talks on EEC at this conference!

@ Very promising observable to see saturation effects as well.

@ Nucleon EEC ~ partonic angular
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Towards precision small-x physics in the
saturation regime
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Precision small-x physics
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Ingredients of NPLO small-x calculation

Universal non linear NPLL BK/JIMWLK evolution equation

@ Process independent, resum a2 In"(1/xg;) to all orders.

@ Recents results on spin dependent small-x evolution, NLL JIMWLK with massive quarks.

4

Process dependent NP LO impact factors

@ Non-exhaustive list of recent NLO results in eA or ep

Dijet+photon in DIS

Inclusive dijets , inclusive dihadrons
Structure functions for massive quarks.

Exclusive heavy-vector production.

Diffractive structure functions.

@ Topic not covered here: sub-eikonal corrections suppressed by powers of xg;.
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Precision small-x physics
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DIS structure functions for massive quarks

@ Less sensitive to non-perturbative dipole sizes as the charm mass regulates the IR.

@ Recent calculation of the NLO impact factor for massive qg pair in light-cone
perturbation theory.

@ Reduces theoretical uncertainties on saturation models.
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Precision small-x physics
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Inclusive dijet production in DIS

@ Full NLO calculation in the CGC in ,
10° T T
—LO impact factor
——NLO impact factor (Sudakov only)
—full NLO impact factor

@ Focus on back-to-back kinematics: P, > q, .

MV model, Q2= 1.0 GeV”

@ Sudakov double and single logarithms. A= L Q=3 GeV
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Selected topics about the connection
between saturation and AA physics
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Saturation vs AA collisions
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Constraining initial conditions to small system collisions

@ Incoherent exclusive vector meson production interesting to probe subnuclear fluctuations.

T T

@ Constraining power of fluctuating nucleon substructure within CGC based IP-Glasma

model.
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Saturation vs AA collisions
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Jet quenching in eA?

@ Calculations in collinear factorization, with a g for cold nuclear matter ~ Qsz/L
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@ At small-x, negligible jet energy loss "inside the medium” AE e ~ a2Q?L < E.

Coherent energy loss should dominate:

Rpa < 1 for jets at small x7?
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Saturation vs AA collisions
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Quantum evolution of g

Synergy between small-x and jet quenching physics
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@ § receives double log corrections from
fluctuations with formation time 7 < L. o,
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@ Many recent studies of quantum corrections to §:

10—I 4

@ Improved initial conditions to BK, including
radiative corrections "inside the shockwave”.

- tree level
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Conclusion
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Concluding remarks

@ A taste of some of the recents developments in saturation physics.

e Many things | did not have the time to cover, especially works in the BFKL/dilute
approaches or saturation physics in pA collisions.

@ Many opportunities for saturation in photoproduction at the LHC.
See next talk by Vadim Guzey.

THANK YOU!
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