ALICE Highlights James Mulligan, Lawrence Berkeley National Laboratory for the ALICE Collaboration

I I th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions March 27, 2023

QCD in vacuum

Properties of QGP

Perturbative QCD

How much of the fragmentation process is perturbatively calculable?

Can experiment guide our understanding of the hadronization process?

ALI-PREL-538346

James Mulligan, LBNL

ALICE Highlights, HP2023

A new type of jet observable: N-point angular correlation

Direct sensitivity to QCD scales

Clear separation of perturbative emissions and hadronization

March 27, 2023

6

Poster: Sanghoon Lim

Poster: Michele Pennisi

arXiv:2211.14032

James Mulligan, LBNL

10 12 14

What have we learned about charm hadronization?

(I) Charm fragmentation fractions differ in pp vs. e^+e^-

(2) Models that modify hadronization can partially explain data

Exploring the limits of QCD factorization

Additional insight from:

- □ Charm vs. beauty
- Multi-HF hadrons
- Charm hadrons in jets

James Mulligan, LBNL

Antonio Palasciano Wednesday 2:40pm

2.5

1.5

1.5

0.5

0.4

data

0.5

0.6

 $\Lambda_{\rm c}^{+}/D^{0}$

arXiv:2301.13798

..........

0.9

0.7

•••••• PYTHIA 8 Monash

- - PYTHIA 8 CR-BLC Mode 2

......

0.8

James Mulligan, LBNL

ALICE Highlights, HP2023

Charm fragmentation in jets

Preeti Dhankher Wednesday 11:10am

Wealth of new experimental constraints on hadronization models

James Mulligan, LBNL

ALICE Highlights, HP2023

Properties of nuclei

n vacuum

Properties of QGP

Can EW probes provide new constraints on nuclear PDFs?

How are gluons distributed in nucleus as a function of x, Q^2 ?

ALI-PREL-538803

James Mulligan, LBNL

First LHC measurement of isolated prompt photon $R_{\rm pA}$ at $p_{\rm T} < 20 {\rm ~GeV}$

Probing $x \sim 10^{-3}$ Gluon shadowing region

> See also: Inclusive photons arXiv:2303.00590

New constraints on nPDFs at forward rapidity $x \sim 10^{-4}$

James Mulligan, LBNL

Ratio to CT14

ALICE Highlights, HP2023

J/v photoproduction $\gamma + A \rightarrow J/\psi + A$

Ionut Cristian Arsene Wednesday 9:00am

March 27, 2023

15

See also: p-Pb results

Poster: Minjung Kim Poster: Michael Winn

Constrain gluon density down to $x \sim 10^{-5}$

James Mulligan, LBNL

J/w photoproduction

Roman Lavicka Tuesday 3:40pm

Properties of nuclei

n vacuum

Properties of QGP

Microscopic properties of the QGP

Variety of probes with complementary strengths **Resolution scale** Connection to lattice, pQCD

Which **jet observables** will provide new and interpretable information about the QGP?

perturbative QCD

Models suggest this is due medium

Detailed phenomenology of in-medium fragmentation — connections to QGP resolution length

James Mulligan, LBNL

ALICE Highlights, HP2023

Jet substructure Focus on observables that are calculable, corrected, and complementary

Event shape engineering

James Mulligan, LBNL

ALICE Highlights, HP2023

Caitlin Beattie Thursday 10:20am

Can **heavy-flavor quarks** provide an additional handle on jet-medium interactions?

perturbative QCD

ALICE Highlights, HP2023

b quarks in Pb-Pb

Martin Völkl Wednesday 9:00am

Can the dissociation and regeneration of **quarkonium states** elucidate color screening?

lattice QCD, pQCD

Pengzhong Lu Tuesday 11:10am

Victor Feuillard Thursday 9:40am

See also: Inclusive J/ψ

Charmonium

Bulk properties of the QGP

Temperature **B-field** Vorticity

Ana Marin Thursday 9:00am

Poster: Nicolas Strangmann

Poster: Jens Robert Lühder

Poster: Joshua Koenig

Electromagnetic radiation Sensitive to QGP temperature

Direct photons: extraction of T

James Mulligan, LBNL

Raphaelle Bailhache Tuesday 3:00pm

Poster: Florian Eisenhut

Di-electrons

Hint of low-mass thermal excess

ALICE Highlights, HP2023

Can we establish the limits of QGP formation by studying small systems?

The Future

ALICE Highlights, HP2023

ALICE Highlights, HP2023

35

ALICE Highlights, HP2023

Jets	<u>Transverse momentum (j_{T}) distributions of charge Multiplicity dependence of charged-particle jet pro-</u>
HF	Non-prompt D^0 production in p-Pb collisions at $\frac{1}{2}$ Ξ_c^0 via the semileptonic decay channel in pp collisions of Ω_c open heavy-flavour production from the high mass
Quarkonia	Quarkonium production and flow in small systems
EM	First results of dielectron analyses in Run 3, Flori Topological separation of dielectron signals in Pb-F Neutral meson production as a function of multip $\pi^+\pi^-$ and K^+K^- photoproduction in ultra-periphe J/ ψ photoproduction and exclusive dimuon produ
Strangeness	Particle yield modification in jet-like azimuthal V^0 -
Resonances	ω meson production in pp and p-Pb collisions at $\sqrt{\omega}$ mesons in pp collisions at $\sqrt{s} = 13$ TeV, Jens

ALICE Posters

ed-particle jet fragments in pp collisions at $\sqrt{s} = 5.02$ TeV, **Jaehyeok Ryu** operties in pp and p-Pb collisions, Debjani Banerjee, Reynier Cruz-Torres

$\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$, Mingyu Zhang

ons and in p-Pb collisions, Sanghoon Lim

ss dilepton spectrum in pp collisions at $\sqrt{s} = 13$ TeV, Michele Pennisi

s, Tabea Maria Eder

an Eisenhut Pb collisions, Jerome Jung <u>blicity in pp collisions at $\sqrt{s} = 13$ TeV</u>, **Joshua Koenig** eral Pb-Pb collisions, Minjung Kim uction in p-Pb collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$, Michael Winn

-hadron correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, Mustafa Anaam

$\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$, Nicolas Strangmann

Robert Lühder

ALICE results

March 27, 2023

40

Heavy flavor hadronization

Identified particles in jets

γ , W in p-Pb collisions J/ψ in γA collisions

low-x content of nucleus

oic: konium

Macroscopic: T, B, vorticity

New clues to understand many-body dynamics of QCD

