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1 Motivation

> A full first-principles description of the time evolution of the quark-gluon plasma [m(7) 4 Real-time path @+  Re(?)
(QGP) in heavy-ion collisions is still missing. - ’) g
> Current models and approaches to non-equilibrium QCD successfully explain parts of § ' G-
the QGP evolution but are limited in applicability (class.-stat., kinetic theory, AdS/CFT). g
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> Hydrodynamical equations require transport coefficients (viscosities). S i Sl
> Evolution equations for hard probes (e.g., jets, heavy quarks / quarkonia) also need |
transport coefficients (jet quenching parameter ¢, diffusion coefficient «, ...). P

. . . . . Figure 1: Continuous and discretized Schwinger-
> Direct computations of such QCD real-time observables are difficult due to the infa- Kegfdysh contour- 'regl_ltjime . thelrmal EZEUC”dear;A)" p%th_
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2 Complex Langevin (CL) for real-time Yang-Mills simulations 3 Modern stabilization methods

>~ Approach: Complex Langevin (CL) method for Yang-Mills theory (continuum) > Adaptive stepsize (AS) [1]
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> To compute oscillatory expectation values at sufficiently late Langevin times 6: w0 | OAG
Oo+1T .
/ DAOAISA & lim / 49 O[A(6) . Gauge cooling (GC) [2]
Oo—oo 1" Jg, stabilization by reducing ‘distance’
~ Complexification of Lie algebra (generators t*) of the gauge group: SU(N) — SL(N, C) F|U|to SU(N):
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4 Stabilization using new anisotropic kernel I'
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Figure 2: O for contour tilt angles « of Fig. 1 with AS and (i) no further stabiliza-
tion, (ii) with GC and adjusted Ny, and (iii) with GC and our kernel I'(N;). The
gray curve shows the result on a Euclidean (thermal) time path.

Figure 3: Normalized histogram of the non-unitary part of the drift term (i) without
stabilization, (ii) with GC and adjusted N¢, and (iii) with GC and our kernel I'(N¢).

> Studies of SU(2) Yang-Mills theory in Ref. [3] on the tilted real-time path (yellow in Fig. 1) used the unkerneled CL equation (1) with
I', = 1. We reproduce their results as dashed lines in Fig. 2 for the average spatial plaquette (O = ReTrU;;).

> They quickly converge to a wrong value in Fig. 2 although (O) should be time-path independent and agree with the Euclidean result
(gray) due to thermal time-translation invariance. Additional GC and increasing V; for fixed N;a; does not improve convergence (dotted).

> Exploiting the kernel freedom of CL, in Ref. [4] we introduce a new anisotropic kernel with 'y = |a;|*/a? and T'; = 1 in Eqg. (1), which
we motivate using a new and unambiguous contour parameter formulation of the CL equation. In Fig. 2 simulations with our kernel and
the same N, as before form a broad meta-stable 6-region that yields the correct thermal result after averaging over it (high precision).

> The improved convergence can be also seen in Fig. 3 where we show the histogram of the imaginary part of the drift DSy, = 5?XV for

tan(a) = 0.625. Without our kernel, the stochastic process strays deep into the complex configuration space, leading to instabilities or
wrong convergence. In contrast, I'(V;) yields increasingly localized distributions with growing N,, and thus correct CL processes.

5 Conclusion

> SU(2) gauge theory on complex time paths with CL requires additional stabilisation 1] G. Aarts, F. A. James, E. Seiler and I. O. Stamatescu, Phys.
Lett. B 687, 154-159 (2010).
> Our kernel I improves stability and leads to correct convergence [2] E. Seiler, D. Sexty and I. O. Stamatescu, Phys. Lett. B 723,
213-216 (2013).
= Extrapolation to Schwinger-Keldysh time contour, renormalization and scale setting [3] J.Berges, S. Borsanyi, D. Sexty and I. O. Stamatescu, Phys.
Rev. D 75, 045007 (2007).
= Potential application to transport coefficients, non-equilibrium dynamics of QCD [4] K.Boguslavski, P. Hotzy and D. I. Miller, [arXiv:2212.08602)].
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