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Ultra-peripheral collisions 

• In ultra-peripheral heavy-ion 
collisions (UPC) we observe photon-
photon interactions 


• New research opportunities 


• Electromagnetic (EM) fields of 
relativistic ions considered as fluxes 
of photons (they scale with ~ Z2) 

• Described in a Equivalent Photon 
Approximation (EPA) formalism


• Reaction cross-section calculated by 
convolving the respective photon 
flux with the elementary cross-
section for the process 
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Ultra-peripheral collisions 

• Advantages of UPC heavy-ion collisions:


• Increased cross-sections wrt to pp collisions (cross-sections scale by Z4 
what is ~4.5x107)


• Very low hadronic pileup - exclusive selections possible


• Low pT particles can be triggered and reconstructed
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Central HI collision

Ultra-peripheral HI collision
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Motivation
• This talk discusses new measurements performed by the ATLAS 

Collaboration in UPC PbPb at 5.02 TeV: 
 
 
 
 
 
 
 
 
 
 
 
 

• Other ATLAS measurements in UPC discussed by Iwona 
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• Observation of the γγ→ττ 
process in Pb+Pb collisions and 
constraints on the τ-lepton 
anomalous magnetic moment 
with the ATLAS detector:  
arXiv:2204.13478, accepted by 
PRL


• Measurement of light-by-light 
scattering and search for axion-
like particles with 2.2 nb−1 of 
Pb+Pb data with the ATLAS 
detector:  
JHEP 03 (2021) 243  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I. INTRODUCTION

Precision measurements of electromagnetic couplings are fundamental tests of quantum electrodynamics (QED)
and powerful probes of new physics beyond the Standard Model (BSM). The electron anomalous magnetic moment
ae = 1

2 (ge � 2) is among the most precisely measured observables in nature [1, 2]. The muon counterpart aµ is
measured to 1 part in 107 [3] and reports a longstanding 3 � 4� deviation from the SM prediction, which may be a
harbinger of new physics.
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Motivation
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• Constraints on τ-lepton 
anomalous magnetic moment


• Its value can be modified by 
various BSM phenomena 
(leptoquarks, lepton 
compositeness, SUSY, …) 


• New particles can enter the loop


• Modifications in LbyL cross-
sections might be induced by 
many BSM phenomena (Born-
Infeld extensions of QED, space-
time non-commutativity in QED, 
extra spatial dimensions, …)  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γγ→ττ 
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 arXiv:2204.13478

https://arxiv.org/abs/2204.13478
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aτ - measurement strategy

• Magnetic moment of the particle and its spin are related by g-factor: μ=g q/2m S 

• Dirac’s equation predicts g=2 for charged leptons, higher-order corrections result 
in g≠2, 


• These discrepancies are quantified by the lepton anomalous magnetic moments  
al = (g-2)l /2


• Currently the best constraints for aτ are from  
DELPHI experiment: -0.052<aτ<0.013 (95% CL) 
EPJC 35 (2004) 159


• Measurement of aτ in HI UPC collisions using  
γγ→ττ events proposed in several publications:


• F. del Águila, F. Cornet, J.I. Illana, PLB 271 (1991) 256

• L. Beresford, J. Liu, PRD 102 (2020) 113008 

• M. Dyndal, M. Schott, M. Klusek-Gawenda, A.  

Szczurek, PLB 809 (2020) 135682 
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PLB 809 (2020) 135682 

https://link.springer.com/article/10.1140/epjc/s2004-01852-y
https://www.sciencedirect.com/science/article/abs/pii/037026939191309J?via=ihub
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.113008
https://www.sciencedirect.com/science/article/pii/S0370269320304858
https://www.sciencedirect.com/science/article/pii/S0370269320304858


BSM in PbPb UPC data in ATLASA. Ogrodnik

Ditau events
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 μ + 1 track

 μ + 3 tracks  μ + e
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Signal categories

• First observation of γγ→ττ process in HI UPC using 1.44 nb-1 of Pb+Pb data 
recorded by ATLAS in 2018


• Signal τ-leptons are low-energetic, typically with pT < 10 GeV

• No standard ATLAS identification of τ-leptons is used 


• Events classified based on the charged τ-lepton decay products

• Three signal categories: 
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µ1T-SR: 
muon + 1 track

µ3T-SR: 
muon + 3 tracks

µe-SR: 
muon + electron
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Ditau event selection
• Single muon trigger recording events having muon with pT > 4 GeV

• Veto on forward neutron activity (based on ZDC signal) -> MC samples reweighed
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• Other requirements: 

• veto on additional low-pT clusters (for 

µ1T-SR and µ3T-SR) and low-pT tracks 

• For µ1T-SR:  pTμ,trk > 1 GeV

• For µ3T-SR:  m3trks < 1.7 GeV


• Kinematic selection: 
• muons: pT > 4 GeV, |𝜂| < 2.4

• electrons: pT > 4 GeV, |𝜂| < 2.47

• tracks: pT > 100 MeV, |𝜂| < 2.5
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Backgrounds

• Main background 
contributions from dimuon 
production and diffractive 
photonuclear interactions


• Background from γγ → µµ(γ) 
production estimated using 
MC simulation 
(STARLight+Pythia8, 
Madgraph5), constrained by 
a data CR


• Already pre-fit distributions 
in the 2µ-CR show good 
agreement of data and MC
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Backgrounds

• Diffractive photonuclear present in µ1T-SR and µ3T-SR signal regions, estimated 
with data-driven technique


• Control regions defined with additional track with pT < 500 MeV and allowing 
events from Xn0n category


• Event yields extrapolated from control to signal region by relaxing the veto on 
additional (unmatched) clusters from 0 to 8


• Normalisation done to the event yield in the region with 4 to 8 unmatched clusters
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Observation of exclusive ditau production

• The γγ → ττ signal strength and aτ value is extracted using a profile likelihood fit 
using the muon pT distribution


• Simultaneous fit combining all signal regions and dimuon control region


• Dimuon control region (γγ → µµ events) used to reduce systematic  
uncertainty from the photon flux


• Calculations are  
based on the same  
parameterization  
as was used  
in previous LEP  
measurements 


• Clear observation  
(≫ 5σ) of  
γγ → ττ process 
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τ-lepton g—2
• Expected 95% CL limits from combined fit:  −0.039 < aτ < 0.020 


• The best fit value is aτ  = −0.041, with the corresponding 95% CL interval being (−0.057, 0.024) 


• The result is largely limited by statistics, what will improve with Run-3 data


• Constraints similar to DELPHI (EPJ C 35 (2004) 159)
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γγ→γγ 
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JHEP 03 (2021) 243

https://link.springer.com/article/10.1007/JHEP03(2021)243
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Light-by-light scattering

• Light-by-light (LbyL) scattering is a rare Quantum Electrodynamics (QED) process


• Several LbyL measurements done using Pb+Pb collision data at 5.02 TeV, collected 
by LHC experiments 


• ATLAS: 2015: Nature Physics 13 (2017) 852,  
2018: Phys. Rev. Lett. 123 (2019) 052001  
2015+2018: JHEP 03 (2021) 243 

• CMS: 2015: Phys. Lett. B 797 (2019) 134826


• Signal selection:


• Two photons with ET > 2.5 GeV,  
identified with dedicated NN  
ID algorithm) 


• Diphoton mass above 5 GeV,  
low diphoton pT, low diphoton  
acoplanarity: 1- |∆ϕ|/π < 0.01


• Veto on any extra low-pT tracks 
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JHEP 03 (2021) 243

http://dx.doi.org/10.1038/nphys4208
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.052001
https://link.springer.com/article/10.1007/JHEP03(2021)243
https://www.sciencedirect.com/science/article/pii/S0370269319305404
https://link.springer.com/article/10.1007/JHEP03(2021)243
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Backgrounds

• Various background sources considered, the 
largest contributions from:


• Exclusive dielectron production γγ→ e+e-


• Central Exclusive Production (CEP) gg → γγ


• Main background sources are estimated using 
data-driven techniques


• Shapes of the distributions are in good 
agreement but data excess visible in both  
distributions

￼17

5 10 15 20 25 30
 [GeV]γγm

0

5

10

15

20

25

30

Ev
en

ts
 / 

G
eV ATLAS

 = 5.02 TeVNNsPb+Pb 
Signal region

-1Data, 2.2 nb
)γγ → γγSignal (

γγ →CEP gg 
ee→γγ

Syst. uncertainty

3− 2− 1− 0 1 2 3
γγ

y
0

5

10

15

20

25

30

35

40

45

50

Ev
en

ts
 / 

0.
6

ATLAS

 = 5.02 TeVNNsPb+Pb 
Signal region

-1Data, 2.2 nb
)γγ → γγSignal (

γγ →CEP gg 
ee→γγ

Syst. uncertainty

JHEP 03 (2021) 243

https://link.springer.com/article/10.1007/JHEP03(2021)243


BSM in PbPb UPC data in ATLASA. Ogrodnik

Differential cross sections

• Cross-section is measured in a fiducial phase 
space, defined by the requirements reflecting event 
selection 


• The measured integrated fiducial cross-section is 
σfid = 120 ± 17(stat.) ± 13(syst.) ±4 (lumi.) nb,  
while the predicted values are 80 ± 8 nb (Szczurek 
et al.) and 78 ± 8 nb (SuperChic3)


• Differential fiducial cross-sections are unfolded to 
particle level in the fiducial phase space to correct 
for bin migrations due to detector resolution effects


• The unfolded differential fiducial cross-sections are 
compared with the predictions from SuperChic v3.0


• No significant differences between  
predictions and data are seen
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JHEP 03 (2021) 243
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ALP limits

• Axion-like particles (ALP) are hypothetical 
particles  
that appear in many theories with a spontaneously  
broken global symmetry


• ALPs may decay to two photons, what might be  
visible as an excess in mγγ distribution


• Simulated LbyL events are normalized  
to the data yield, after subtracting  
γγ → e+e- and CEP gg → γγ contributions 
and excluding the mass search region 


• ALP contribution is fitted individually  
for every mass bin


• No significant deviation from the  
background-only hypothesis is observed 


• The result is used to estimate the upper  
limit on the ALP cross-section and ALP  
coupling 1/Λa at 95% confidence level 
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Summary

• The γγ→ττ production was clearly observed by ATLAS in UPC Pb+Pb 
collisions


• The measurement of the τ-lepton anomalous magnetic moment is 
competitive with previous measurements


• Improvement in precision expected with more data


• Light-by-light scattering was measured using data from Pb+Pb 
collisions at 5.02 TeV from 2015 and 2018 collected with the ATLAS 
detector 


• Ratio of the measured cross-section to the SM predictions is  
1.50 ± 0.32 (Szczurek et al.) and 1.54 ± 0.32 (SuperChic3)


• The exclusion limits for ALP cross-section and coupling were obtained 
for the mass range of 6 < ma < 100 GeV
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.93.044907
https://link.springer.com/article/10.1140/epjc/s10052-018-6530-5
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Backup
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ATLAS detector

• Large general-purpose detector 
with almost 4π coverage


• η = − ln (tan(θ/2))


• Inner detector |η|<2.5


• Muon system |η|<2.7 (trig. 2.4) 


• Calorimetry out to |η|<4.9


• Zero-Degree-Calorimeters 
capture neutral particles with  
|η|>8.3 
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γγ→ττ cutflow in MC
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Requirement Number of WW ! gg events

Common selection

f ⇥ L 352611
f ⇥ L ⇥ nfilter 28399
f ⇥ L ⇥ nfilter ⇥ FSF 35383
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⇢�,⇠

ZDC < 1 TeV 1114

`1T-SR

#preselected
` = 1 1023

#signal
` = 1 900

#4 = 0 867
#trk (with �'`,trk > 0.1) = 1 575
Zero unmatched clusters 552Õ
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?`,trk

T > 1 GeV 503
?`,trk,W

T > 1 GeV 482
?`,trk,clust

T > 1 GeV 462
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#4 = 0 867
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<trks < 1.7 GeV 83.4
�`,trks
q < 0.2 83.3

`4-SR

#signal
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#trk (with �'`/4,trk > 0.1) = 0 32.6Õ

charge = 0 32.5
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 τ-lepton g—2 , systematic uncertainties

• Approximately 80 nuisance 
parameters (statistical and 
systematic uncertainties) are 
included in the fit 


• Many of them correlated 
between signal and control 
region


• Using dimuon control region 
(γγ → µµ events) significantly 
reduced systematic 
uncertainty from the photon 
flux
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2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
θΔ)/0θ-θ(

topocluster efficiency

egamma energy scale
tracking eff. (PP0 material)

muon momentum res. (ID)

electron efficiency (stat)

muon efficiency (stat)
muon sagitta (res. bias)

electron efficiency (sys)

)ρmuon sagitta (
muon momentum scale

photon flux uncertainty
tracking eff. (overall ID material)

muon L1 trigger (sys)

tau decay modeling

muon L1 trigger (stat)

0.004− 0.002− 0 0.002 0.004τaΔ
:
τ

Pre-fit impact on a
θΔ+θ = θ θΔ-θ = θ

:
τ

Post-fit impact on a
θΔ+θ = θ θΔ-θ = θ

Nuis. Param. Pull NNsPb+Pb 
ATLAS

1− = 5.02 TeV, 1.44 nb
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Signal categories - ZDC selection
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• Different processes  
present different activity  
in the forward region:


• Exclusive dilepton  
production -  ions  
stay intact


• Background events with  
nuclear breakup 


• Three classes defined, based on  
the signal in the ZDC 


• The association between given ZDC signal and given process is 
nontrivial 


• Migrations due to ion excitation and presence of EM pile-up

XnXn

0n0n

Xn0n


