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Hydrodynamization for the bulk of the system

Symmetries of the bulk (or background) :

➢ Isotropic in transverse plane (no fluctuations)

➢No transverse expansion

➢Boost invariance

On time scales of a 

relaxation time,      , the 

system is well described by 

hydrodynamics

Hydrodynamization for 

inhomogeneous systems

1) Full kinetic theory and quantification in 

(2+1) scenario, see talk from Clemens 

Werthmann right before coffee break

Two approaches:

2) Treat inhomogeneities as fluctuations on a locally 

symmetric background: KøMPøST framework
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Evolution

Fluctuation scale

➢ Causal circle defines a symmetric, averaged background with small fluctuations on top

➢ Attractor solution evolves background. Response functions,        , evolve fluctuations

➢ Generic framework for any microscopics:
➢ System has attractor background that can be calculated

➢ Response functions can be calculated

➢ In this work we use QCD kinetic theory with conserved charges
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First step: zero charge background

x

By expanding off a vanishing 

density background, light quarks 

can be treated with the same 

response functions without 

density dependence

What do these response functions look like?
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➢ Response functions give 

information on redistribution of 

quantities at a given
• Scalar-Scalar: energy density 

redistribution

• Vector-Scalar: change of 

transverse flow

➢ From free streaming to wakes 

and wave fronts with speed of 

sound propagation

PRELIMINARY
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Late time 

diffusive 

current 

peak

➢ Redistribution of quantities at a 

given
• Scalar-Scalar: charge density 

redistribution

• Vector-Scalar: change of charge 

current, 

➢ From free streaming to 

diffusive behavior

From wikipedia

PRELIMINARY
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SUMMARY AND OUTLOOK

➢IT IS INTEGRAL TO UNDERSTAND THE THERMALIZATION PROCESSES OF QCD

AND TO SIMULATE IT ACCURATELY IN OUR MODELS

➢THE EVOLUTION OF CONSERVED CHARGES IN HIGH ENERGY HIC’S IS A 

MISSING PIECE OF OUR UNDERSTANDING

➢THE KØMPØST FRAMEWORK CAN HANDLE THIS TASK

➢NEXT STEPS:

➢HYDRODYNAMIC SIMULATION

➢QCD KINETIC THEORY WITH FINITE CHARGE BACKGROUND

➢(3+1) KØMPØST

13
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