Measurement of the deuteron coalescence probability in jets with ALICE

Marika Rasà*
On behalf of the ALICE Collaboration

*University and INFN of Catania
Physics motivation

- Light (anti)nuclei are produced in high-energy hadronic collisions at the LHC
- Matter and antimatter are produced in (almost) the same amount at midrapidity
- Their production mechanism is still not understood
- Two phenomenological models:
 - Statistical hadronization
 - Coalescence
Physics motivation

- Light (anti)nuclei are produced in high-energy hadronic collisions at the LHC
- Matter and antimatter are produced in (almost) the same amount at midrapidity
- Their production mechanism is still not understood
- Two phenomenological models:
 - Statistical hadronization
 - Coalescence

Focus on it
Coalescence model

S. T. Butler et al., Phys. Rev. 129 (1963) 836

- If (anti)nucleons are close in phase space and match the spin state, they can form an (anti)nucleus

- Coalescence parameter B_A is the key observable:

\[
E_A \frac{d^3N_A}{dp_A^3} = B_A \left(E_p \frac{d^3N_p}{dp_p^3} \right)^A \quad p_p = p_A/A
\]

- Coalescence parameter depends on both the source size and radial extension of the nucleus wave function:

Small source size \rightarrow Large B_A

- pp \sim 1 fm
- p–Pb \sim 1.5 fm

Large source size \rightarrow Small B_A

- Pb–Pb \sim 3-6 fm
The study in small systems, such as pp and p–Pb, is interesting since the nucleons are closer in phase space wrt Pb–Pb.

Leading particle (highest p_T and $p_T > 5 \text{ GeV/c}$) used as a proxy for the jet axis.

CDF technique used to find the three azimuthal regions:

- **Toward** ($|\Delta\phi| < 60^\circ$): contains JET and UE
- **Transverse** ($60^\circ < |\Delta\phi| < 120^\circ$): dominated by the Underlying Event (UE)
- **Away** ($|\Delta\phi| > 120^\circ$): contains recoil jet and UE

Jet: Toward – Transverse
The ALICE detector in Run 2

- Most suited LHC experiment to study light (anti)nuclei production
- Excellent PID capabilities

JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044
The ALICE detector in Run 2

Inner Tracking System (ITS)
- Tracking, vertex, PID

Time Of Flight (TOF)
- Tracking, vertex, PID
- PID via time-of-flight

Time Projection Chamber (TPC)
- Tracking, PID via dE/dx

V0
- Trigger, multiplicity

- Most suited LHC experiment to study light (anti)nuclei production
- Excellent PID capabilities

References:

- JINST 3 (2008) S08002
Deuteron identification

Low p_T region (below 1 GeV/c): PID via dE/dx

$$\sigma_{dE/dx} \sim 5.5\% \text{ in } pp, \sim 7\% \text{ in } Pb-Pb$$

High p_T region (over 1 GeV/c): PID via time-of-flight

$$\sigma_{\text{PID}} \sim 70 \text{ ps for } pp, \sim 60 \text{ ps for } Pb-Pb$$
(Anti)deuteron spectra: pp @ 13 TeV

Deuteron production in events with $p_T^{\text{lead}} > 5 \text{ GeV/c}$

The results are consistent with those obtained using the two-particle correlation method.

arXiv:2211.15204v1
Deuteron production in events with $p_T^{\text{lead}} > 5 \text{ GeV/c}$

$\frac{1}{N_{\text{evt}}} d^2N/dp_T dy$ (GeV/c)2

Jet = Toward - Transverse

ALICE Preliminary

$p-$Pb, $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$

$\frac{(d+\bar{d})}{2}$

- Away
- Transverse $\times 2$
- Toward $\times 2$
- Lévy-Tsallis fit

ALICE Preliminary

$p-$Pb, $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$

$\frac{(d+\bar{d})}{2}$

- in-jet
- Lévy-Tsallis fit
Antiproton spectra: p–Pb @ 5.02 TeV

Antiproton production in events with $p_T^{\text{lead}} > 5$ GeV/c

$\text{Jet} = \text{Toward} - \text{Transverse}$

ALICE Preliminary
$p\text{-Pb, } \sqrt{s_{NN}} = 5.02 \text{ TeV}$

$1/N_{\text{ext}} (d^2N/dp_T dy)$ (GeV/c)2
Enhancement of B_2 jet wrt B_2 UE in pp collisions

\[B_2 = \left(\frac{1}{(2\pi/3)p_T^d} \left(\frac{d^2N}{dydp_T^d} \right)_d \right)^2 \left(\frac{1}{(2\pi/3)p_T^p} \left(\frac{d^2N}{dydp_T^p} \right)_p \right) \]

- Enhancement of B_2^{jet} wrt B_2^{UE} in pp collisions

pp, $\sqrt{s} = 13$ TeV

$\rho_T^{\text{lead}} > 5$ GeV/c

ARICLE

arXiv:2211.15204v1

marika.rasa@cern.ch

Hard Probes 2023 - 28/03/2023
B_2 in jet and UE

$B_2 = \frac{1}{(2\pi/3)p_T^d} \left(\frac{d^2N}{dydp_T} \right)_{d} \frac{1}{(2\pi/3)p_T^p} \left(\frac{d^2N}{dydp_T} \right)_{p}$

- Enhancement of B_2^{jet} wrt B_2^{UE} in pp collisions
- What happens in p–Pb collisions?
\[B_2 = \frac{1}{(2\pi/3)p_T^{\text{d}}}(\frac{d^2N}{dydp_T})_{\text{d}}^2 \]

- Enhancement of \(B_2^\text{jet} \) wrt \(B_2^\text{UE} \) in pp collisions
- What happens in p–Pb collisions?
- Enhancement factor is larger wrt pp collisions
\(B_2 \) in jet and UE

- Enhancement of \(B_2^{\text{jet}} \) wrt \(B_2^{\text{UE}} \) in pp collisions
- What happens in p–Pb collisions?
- Enhancement factor is larger wrt pp collisions

\[B_2 = \frac{1}{(2\pi/3)p_T^d} \left(\frac{d^2N}{dy dp_T} \right)_{d} \]

\(B_2^{\text{UE}}(p-Pb) < B_2^{\text{UE}}(pp) \) since p–Pb source size is larger than pp source size
B_2 in jet and UE

Assuming the same source size for nucleons in jet, nucleons are probably closer in momentum space in p–Pb wrt pp since p–Pb source size is larger than pp source size.

- Enhancement of B_2^{jet} wrt B_2^{UE} in pp collisions
- What happens in p–Pb collisions?
- Enhancement factor is larger wrt pp collisions

$B_2^{\text{jet}} (p$–$Pb) > B_2^{\text{jet}} (pp)$

$B_2^{\text{UE}} (p$–$Pb) < B_2^{\text{UE}} (pp)$ since p–Pb source size is larger than pp source size

Assuming the same source size for nucleons in jet, nucleons are probably closer in momentum space in p–Pb wrt pp

\[
B_2 = \frac{1}{(2\pi/3)p_T^d} \left(\frac{d^2N}{dydp_T} \right)_d \left(\frac{1}{(2\pi/3)p_T^p} \left(\frac{d^2N}{dydp_T} \right)_p \right)^2
\]
B_2 in jet and UE

For the first time, we see some differences between jets in pp and p–Pb collisions.

- Difference related to particle composition?

\[
B_2 = \frac{1}{(2\pi/3) p_T^d} \left(\frac{d^2N}{dydp_T} \right)_d^2
\]

- Enhancement of B_2^{jet} wrt B_2^{UE} in pp collisions

- What happens in p–Pb collisions?

- Enhancement factor is larger wrt pp collisions

\[B_2^{\text{jet}} (p–Pb) > B_2^{\text{jet}} (pp)\]

\[B_2^{\text{UE}} (p–Pb) < B_2^{\text{UE}} (pp)\] since p–Pb source size is larger than pp source size

For the first time, we see some differences between jets in pp and p–Pb collisions

Difference related to particle composition?

marika.rasa@cern.ch
d/p in jet and UE

- \(d/p\) calculated as ratio of normalized spectra
- \(d/p\) _jet_ is higher than \(d/p\) _UE_

Higher \(d/p\) _jet_ in p–Pb collisions wrt pp collisions
- Different particle composition \(\rightarrow\) could affect the coalescence probability

\(\text{ALICE Preliminary}\)
\(p–\text{Pb}, \sqrt{s_{NN}} = 5.02\ \text{TeV}\)
\(p_T^{\text{lead}} > 5\ \text{GeV/c}\)

\(\text{in-jet}\)
\(\text{underlying event}\)
B_2 in jet and UE – model comparison

- Two different models:
 - PYTHIA 8 Monash 13 + simple coalescence

![Graph showing B_2 vs p_T/A for different models.](image)
B_2 in jet and UE – model comparison

- Two different models:
 - PYTHIA 8 Monash 13 + simple coalescence
 - PYTHIA 8.3 with reaction-based deuteron production (Bierlich et al., arXiv:2203.11601)
B₂ in jet and UE – model comparison

- Two different models:
 - PYTHIA 8 Monash 13 + simple coalescence
 - PYTHIA 8.3 with reaction-based deuteron production (Bierlich et al., arXiv:2203.11601)

- Both models qualitatively reproduce the data and the large difference between B₂^{jet} and B₂^{UE}
B_2 in jet and UE – model comparison

- Two different models:
 - PYTHIA 8 Monash 13 + simple coalescence
 - PYTHIA 8.3 with reaction-based deuteron production (Bierlich et al., arXiv:2203.11601)

- Both models qualitatively reproduce the data and the large difference between B_2^{jet} and B_2^{UE}

- Further comparison with models

Graphs:

- **Graph 1:**
 - B_2 vs p_T/A for jet and UE features
 - Data compared to PYTHIA 8 Monash 13 + simple coalescence

- **Graph 2:**
 - B_2 vs p_T/A for PYTHIA 8.3 with reaction-based deuteron production

Data/Model Comparison:

- B_2 values compared to underlying event predictions
- ARXIV:2211.15204v1

Note:

- marika.rasa@cern.ch
- Hard Probes 2023 - 28/03/2023
Summary

• Light (anti)deuteron production in three azimuthal regions in pp and p–Pb collisions

• Coalescence parameter in-jet and underlying event
 • Enhancement of B_2^{jet} wrt B_2^{UE} of a factor 15 (24) in pp (p–Pb) collisions

• Higher B_2^{jet} in p–Pb collisions wrt pp collisions
 • Nucleons are probably closer in momentum space in p–Pb wrt pp

• Higher d/p ratio in p–Pb collisions wrt pp collisions for jets

• Good agreement with model comparison in pp collisions

• New investigation in Run 3 data

Thank you for the attention!
Statistical models

- Hadrons emitted from a system in statistical and chemical equilibrium
- T_{chem} is the key parameter
- $dN/dy \propto \exp(-m/T_{\text{chem}})$
- Nuclei binding energy \sim few MeV → how they can survive?
- Particle yield well described with a common T_{chem} of ~ 156 MeV

(Advanced) coalescence model

- Wigner function formalism

\[N_A = g_a \cdot \int d^3x_1 \ldots d^3x_A \cdot d^3k_1 d^3k_A \cdot f_1(x_1, k_1) \cdot f_A(x_A, k_A) \cdot W_A(x_1, \ldots, x_A, k_1, \ldots, k_A) \]

- Different Wigner density functions available:
 - Gaussian: standard one
 - Double gaussian
 - Hulthén: Yukawa-like potential
 - \(\chi \text{EFT} \): Chiral effective field theory
Coalescence parameter

- B_A is rather flat in all multiplicity classes, but increase at high p_T/A in the MB class.

Smooth evolution from small to large source size.
The ALICE detector in Run 2

Inner Tracking System (ITS)

Six concentrical layer of silicon sensors:

- 2 layers of Silicon Pixel Detectors (SPD);
- 2 layers of Silicon Drift Detectors (SDD);
- 2 layers of Silicon micro-Strip Detectors (SSD).
The ALICE detector in Run 2

Time Projection Chamber (TPC)

Cylindrical gas detector, made by a field cage filled with Ne/CO$_2$/N$_2$ (90/10/5). The cage is closed with two endcaps made of Multi-Wire Proportional Chambers (MWPC).

JINST 3 (2008) S08002
Int. J. Mod. Phys. A 29 (2014) 1430044
The ALICE detector in Run 2

Time Of Flight (TOF)

90 modules formed by a system of 10 gaps double stack Multigap Resistive Plate Chambers (MRPC). The resistive plates are made with commercially available soda-lime glass sheets with a gap of 250 μm.

JINST 3 (2008) S08002

Int. J. Mod. Phys. A 29 (2014) 1430044
The ALICE detector in Run 2

Formed by two different modules, V0A and V0C, consisting of two arrays of scintillator counters and Wave-Length Shifting (WLS) fibres installed on either sides of the interaction point.
Pythia simulation

• **PYTHIA 8.3:**
 - d production via ordinary reactions
 - Energy dependent cross sections parametrized based on data
 - Reactions:
 - $p + n \rightarrow \gamma + d$
 - $p + n \rightarrow \pi^0 + d$
 - $p + n \rightarrow \pi^0 + \pi^0 + d$
 - $p + n \rightarrow \pi^+ + \pi^- + d$
 - $n + n \rightarrow \pi^- + d$
 - $n + n \rightarrow \pi^- + \pi^0 + d$

• **PYTHIA 8 Monash:**
 - Simple coalescence
 - d is formed if $\Delta p < p_0$, with $p_0 = 285$ MeV/c