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Formulation of the problem

Use machine learning techniques to understand what observable are sensitive to jet quenching

* Prerequisites for a meaningful answer
« Completeness of data <=> ML model reflects the training data
 => Need clear understanding what questions we are trying to answer

 => Select the input data appropriately <=> e.g. IF model learns from input
missing important elements of the problem it will produce meaningless
(or potentially misleading) results

 Model independent/agnostic methods
« Human understandable/interpretable result

 Theoretical understanding



Formulation of the problem

Use machine learning techniques to understand what observable are sensitive to jet quenching

e ... OUr approach

Prerequisites for a meaningful answer ~« include all relevant effects - e.g.

background!

« Completeness of data
.2, MC independent, use exp. data

 Model independent/agnostic methods

. +* Symbolic regression; keep leadin
* Understandable/interpretable result . ... tgrms J P 9

e Theoretical understandin . .
© J > formulate observables in connection

with a theoretical formalism

What are the maximally discriminating observables
(understandable on theoretical ievel) of jets in AA from jets in pp?



Formulation of the problem



“Simple” question:
Which jets are gquenched and which are not?

A “trivial” answer:
Jets In pp are not quenched



Eventually learn from
exp data directly!

Figure 1. Schematic illustration of jets in pp (left) and heavy-ion AA (right) collisions. Interactions
with the QGP can lead to a modification of the jet substructure. By training a binary classifier,
the machine learns the relevant information that6 distinguishes jets in pp and AA collisions.



|IRC-safe vs. IRC-unsafe architectures

Permutation-invariant neural networks based on deep sets . ... .,

Wagstaff et al. 1901.09006
Unordered, variable-length sets of particles as input Bloem-Reddy,Teh JMLR 21 90 (2020)

Komiske, Metodiev, Thaler [HEP 01 (2019) 121

Particle Flow Network (PFN) Energy Flow Network (EFN)
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Classifier DNNs Classifier DNNs

Includes IRC-unsafe information Includes only IRC-safe information



True AA Rate

IRC-safe vs. IRC-unsafe physics

Lai, Mulligan, Ptoskon, Ringer |

JEWEL vs. PYTHIAS

100 < pr jet <125 GeV
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We compare the IRC-unsafe network
(PFN) to an IRC-safe network (EFN)

M
Jps--spy) = F Z z;® (ﬁi)

W

Classifier DNNs

|IRC-unsafe information contains

significant discriminating power




JEWEL vs. PYTHIA8 100 <pr,jet <125 GeV
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Figure 2. Classification performance of pp vs. AA jets quantified in terms of ROC curves using
IRC-unsafe PFNs and IRC-safe EFNs. The jet samples in pp and AA collisions are obained from
Pythia 8 [70] and Jewel [72, 73].



Guiding future measurements?
Observable design...



Observable design

Lai, Mulligan, Ptoskon, Ringer JHEP 10,011 (2022)

1. Design the most strongly modified observable that is theoretically calculable
2. Optimize discriminating power vs. complexity (trade d. power for simplicity)

— JEWEL

~— PYTHIAS
doy
Ci ddpp

1
9 dogh

oML, (4 terms)

First step in a new paradigm: data-driven design of complete set of calculable observables

Complementary to Bayesian approach
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First step in a new paradigm: data-driven design of complete set of calculable observables

Complementary to Bayesian approach



The information content of jet quenching
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JEWEL vs. PYTHIAS

100 < PT, jet < 125 GeV
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Systematic approach: how many observables does one need to measure?



Encoding information Iin terms of observables

N-subjetiness basis and Energy Flow Polynomials

JEWEL vs. PYTHIA8 100 <pr,jet <125 GeV
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Figure 4. ROC curves for jets in pp vs. AA collisions using the N-subjettiness basis. For
comparison we also show the result obtained using the classifier based on PFNs.
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Figure 6. ROC curves for jets in pp vs. AA collisions using the EFP basis up to degree 7.



Observable design

Lai, Mulligan, Ptoskon, Ringer JHEP 10,011 (2022)

Goal: desigh a minimal set of observables that are theoretically calculable

Example: design a single observable that is maximally modified

OML = Z cc EFP;  where EFP, are energy flow polynomials

Geg v M
€.& EFPG — O — Z ZZilzizel%»iz

i1=1 12=1

We can determine the coefficients using symbolic regression

0 Regularization allows us to choose complexity of allowed max doy, (c.) — 1
solution (e.g. how many nonzero coefficients) . dUpp G




ML-assisted observable design

Lai, Mulligan, Ptoskon, Ringer JHEP 10,011 (2022)

Lasso regression JEWEL vs. PYTHIA8 100 < pr jet < 125 GeV
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By training ML classifier and balancing the tradeoff of discriminating power

and complexity, we can design the most strongly modified calculable observable



0.6

0.4

True AA Rate

0.2

A1 (girth)
e <««« Ay (thrust)
e ann B

Zg

[1(<8)cns, 23 terms
N,B

| — ﬂ (Tﬁ,)c""ﬁ, 4 terms
N, B

— ZCGEFPG, 4 terms
G

0.4 0.6 0.8 1.0

False AA Rate

Figure 7. ROC curves for the Lasso regression using the NN-subjettiness basis and EFPs. For
comparison we also show the result for typical observables in heavy-ion collisions.



Realistic conditions include
BACKRGOUND!

(aka heavy-ion underlying event)



1. Background <=> Noise
=> Loss of discrimination power



1. Background <=> Noise
=> Loss of discrimination power

2. Finite accuracy of background subtraction
=> Loss of signal/information



Jets within heavy-ion events

Adding realism to the problem - background and information loss

1. Background <=> Noise
=> Loss of discrimination power

2. Finite accuracy of background subtraction

=> Loss of signal/information
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Figure 9. ROC curves for PFNs trained with (i) PYTHIA8 /JEWEL jets, (ii) jets clustered from a
combination of PYTHIA8/JEWEL events with a thermal background, with event-wide constituent
subtraction applied (Rmax = 0.25), (iii) PYTHIA8/JEWEL jets only considering jet constituents
with pr > 1 GeV, and (iv) jets clustered from a combination of PYTHIAS/JEWEL events with a
thermal background, only considering jet constituents with pr > 1 GeV, with event-wide constituent
subtraction applied (Ryax = 0.25).



Jets within heavy-ion events

Adding realism to the problem - background and information loss

1. Background <=> Noise

JEWEL vs. PYTHIAS8
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Figure 9. ROC curves for PFNs trained with (i) PYTHIA8 /JEWEL jets, (ii) jets clustered from a
combination of PYTHIA8/JEWEL events with a thermal background, with event-wide constituent
subtraction applied (Rmax = 0.25), (iii) PYTHIA8/JEWEL jets only considering jet constituents
with pr > 1 GeV, and (iv) jets clustered from a combination of PYTHIAS/JEWEL events with a
thermal background, only considering jet constituents with pr > 1 GeV, with event-wide constituent
subtraction applied (Ryax = 0.25).



Jets within heavy-ion events

Adding realism to the problem - background and information loss

1. Background <=> Noise
=> Loss of discrimination power

2. Finite accuracy of background subtraction

=> Loss of signal/information

Introduction of the realistic conditions

(experimental backgrounds)
critical applicability test!

ML w/0 UE not OK!
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Figure 9. ROC curves for PFNs trained with (i) PYTHIA8 /JEWEL jets, (ii) jets clustered from a
combination of PYTHIA8/JEWEL events with a thermal background, with event-wide constituent
subtraction applied (Rmax = 0.25), (iii) PYTHIAS/JEWEL jets only considering jet constituents
with pr > 1 GeV, and (iv) jets clustered from a combination of PYTHIAS/JEWEL events with a
thermal background, only considering jet constituents with pr > 1 GeV, with event-wide constituent

subtraction applied (Ryax = 0.25).



True AA Rate

Experimental guidance from ML

Lai, Mulligan, Ptoskon, Ringer JHEP 10,011 (2022)

To what extent does the background destroy discriminating power?

JEWEL vs. PYTHIAS
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1.0

—p Large, irrecoverable information loss

O Soft physics
0 Background subtraction algorithm

Delicate challenge: soft information is crucial to
discriminate, yet UE fundamentally prevents
much of this information from being accessed

First study quantifying the information

loss of background subtraction algorithms



Information loss due to background

Lai, Mulligan, Ploskori, Ringer JHEP 10 (2022) 01 |

Background subtraction algorithms
remove small but significant information

Discriminating power is highly reduced by
the fluctuating underlying event

100 < pr jet < 125 GeV JEWEL vs. PYTHIAS
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Delicate challenge: soft information crucial, yet New metric to assess background

background prevents from being accessed subtraction algorithms




Conclusions

We propose that each of the three complementary studies in Sections 3-5 can be per-
formed on experimental data:

o Measuring the ROC curve. The measured ROC curve can serve as an observable
that can be compared to Monte Carlo event generators. Moreover, the distribution
of information content with complete sets of jet substructure observables can provide
a differential test of jet quenching models, to the extent that highly soft-sensitive
observables, such as high-N N-subjettiness or high-dimension EFPs, can be reliably
measured in the presence of the heavy-ion underlying event.

o NML-assisted observable design. Regardless of whether the classifier is trained on
detector-level inputs or corrected inputs, symbolic regression can be used to identify
approximate maximally discriminating observables. These identified observables can
then be measured with traditional techniques: correcting for detector and background
effects, and in principle comparing to jet quenching calculations.

o Information content and background subtraction techniques. The information loss
caused by various background subtraction algorithms can be quantified by comparing
classification performance before and after subtraction, and can be used to select and
tune subtraction algorithms to minimize information loss.



Goal: extract transport properties of nuclear matter e.g. g

Ru, Kang,Wang, Xing, Zhang, PRD 103, L031901 (2021)
Li, Liu,Vitev, PLB 816, 136261 (2021)

Train ML classifier to distinguish ep vs. ¢A jets

Can use interpretable ML:

0 Gain insight about type of information responsible
for differences: IRC-safe vs. IRC-unsafe, hard vs. soft

0 Design maximally discriminating observables that
are calculable in pQCD
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0

Can be applied directly on experimental data

do,,
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Maximizing cold nuclear matter effects

Lai, Mulligan, Ploskof, Ringer JHEP 10 (2022) 01 |
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Spin physics

Lee, Mulligan, Ptoskon, Ringer,Yuan arXiv 2210.06450

Spin asymmetries encode information about
internal structure of proton:

B do! — do?
~ do! + do!

ML-assisted designh of
observables that
maximize asymmetry

max |A((9) |
0

Train directly on experimental data: 6! vs. 6"
Can be applied at RHIC, EIC

Structure of QCD bound states

Gluon saturation
EIC Yellow report, ALICE FoCal Proposal

Can we observe saturation of the gluon
density in the nucleus!?

In Q?

~ Can be applied at LHC, EIC

A el
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DGLAPI Bayesian inference
\_ o  to test universal,
| ‘_ ~ non-linear scaling
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e
In X

Design sets of observables to test models



Thank you!



Encoding information Iin terms of observables

N-subjetiness basis and Energy Flow Polynomials
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Figure 3. Scatter plot showing different N-subjettiness distributions (diagonal) and their pairwise
correlations (off-diagonal panels) in pp and AA collisions without background. The pp and AA
results shown here are obtained from Pythia 8 [70] and Jewel [72, 73], respectively.
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Observable design
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By balancing the tradeoff of discriminating power and complexity,
we can desigh the most strongly modified calculable observable

JEWEL vs. PYTHIA8 100 < pr,jet <125 GeV
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ML-assisted observable design provides guidance to experiments and theory —

can then measure and calculate desighed observables using traditional methods



