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Formulation of the problem
Use machine learning techniques to understand what observable are sensitive to jet quenching

• Prerequisites for a meaningful answer


• Completeness of data <=> ML model reflects the training data 


• => Need clear understanding what questions we are trying to answer 


• => Select the input data appropriately <=> e.g. IF model learns from input 
missing important elements of the problem it will produce meaningless 
(or potentially misleading) results


• Model independent/agnostic methods 

• Human understandable/interpretable result 

• Theoretical understanding



Formulation of the problem
Use machine learning techniques to understand what observable are sensitive to jet quenching

• Prerequisites for a meaningful answer


• Completeness of data


• Model independent/agnostic methods 


• Understandable/interpretable result


• Theoretical understanding 

• … our approach


• include all relevant effects - e.g. 
background!


• MC independent, use exp. data


• symbolic regression; keep leading 
terms


• formulate observables in connection 
with a theoretical formalism 

What are the maximally discriminating observables  
(understandable on theoretical level) of jets in AA from jets in pp?



Formulation of the problem




“Simple” question: 

Which jets are quenched and which are not?


A “trivial” answer: 

Jets in pp are not quenched



A classification problem
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Eventually learn from 
exp data directly!
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IRC-safe vs. IRC-unsafe architectures

f(p1, . . . , pM) = F (
M

∑
i=1

ziΦ ( ̂pi))

Particle Flow Network (PFN)

Includes IRC-unsafe information

Zaheer et al. 1703.06114
Wagstaff et al. 1901.09006
Bloem-Reddy, Teh JMLR 21 90 (2020) 

Komiske, Metodiev, Thaler JHEP 01 (2019) 121

Permutation-invariant neural networks based on deep sets

Classifier DNNs

latent space d = 256

f(p1, . . . , pM) = F (
M

∑
i=1

Φ (pi))

Energy Flow Network (EFN)

Includes only IRC-safe information

Classifier DNNs

 Unordered, variable-length sets of particles as input
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IRC-safe vs. IRC-unsafe physics

IRC-unsafe information contains 
significant discriminating power

We compare the IRC-unsafe network 
(PFN) to an IRC-safe network (EFN)

Figure 2. Classification performance of pp vs. AA jets quantified in terms of ROC curves using
IRC-unsafe PFNs and IRC-safe EFNs. The jet samples in pp and AA collisions are obained from
Pythia 8 [68] and Jewel [70, 71].

layers with 100 nodes each. For each dense layer we use the ReLU activation function [106]

and we use the softmax activation function for the final output layer of the classifier. We

train the neural networks using the Adam optimizer [107] with learning rates ranging from

10�3 to 10�4. We use the binary cross entropy loss function [108], and train for 10 epochs

with a batch size of 500. We find no significant changes in performance when changing the

size of the layers, latent space dimension, learning rate, and batch size by factors of 2-10.

For each reconstructed jet, we record the transverse momentum, rapidity and az-

imuthal angle (pT i, yi,�i) of each particle i inside the jet. Following Ref. [86], we perform

a preprocessing step to simplify the training process. We rescale the transverse momenta

of each particle inside the jet with the total transverse momentum of the observed jet. In

addition, we center the rapidity and azimuthal angles of the particles in the jet with respect

to the jet direction. The jet axis is determined using the E-scheme [109]. Here we only

consider PFNs without PID and we leave a more detailed exploration for future work. We

benchmark our setup using the quark- vs. gluon-jet data set provided in Ref. [110] as well

as our own generated quark and gluon samples with PYTHIA8, finding compatible results

with Ref. [86].

Figure 2 shows the ROC curve for pp vs. AA jets using the PFNs and EFNs. The

AUC is 0.860 for the PFN and 0.675 for the EFN. Since PFNs can e�ciently make use

of all the available information, we use them as a benchmark for the other classification

techniques discussed below.
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Guiding future measurements?

Observable design…
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Observable design

How much information is in the nuclear modification factor of jets?
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In heavy-ion collisions the substructure of jets is modified compared to a rescaled proton-proton
baseline due to the presence of the Quark-Gluon Plasma (QGP). In this work, we employ machine
learning techniques to quantify how much information is contained in the nuclear modification
factor of jet substructure observables. We formulate the question about the information content as
a binary classification problem where the machine is trained to learn information that distinguishes
jets in proton-proton and heavy-ion collisions. We perform the classification task using i) deep sets
which includes Infrared-Collinear (IRC) safe and unsafe information, ii) a complete basis of IRC safe
jet substructure observables which is passed to a Dense Neural Network (DNN) and iii) from the
trained DNN we identify optimal observables using symbolic regression. As a proof of concept, we
perform our analysis using parton shower event generator models but we expect that the proposed
framework can be applied directly to the raw data for which we outline possible future directions.
We expect that the automated design of suitable observables for heavy-ion collisions can provide
guidance for extracting information about the QGP from jet substructure data. In addition, the
proposed framework can also be applied to event-wide data samples in heavy-ion collisions and at
the future Electron-Ion Collider.

I. INTRODUCTION

Jets are highly energetic and collimated sprays of par-
ticles which are observed in the detectors of high-energy
scattering experiments such as RHIC and the LHC. They
directly reflect the underlying quark and gluon degrees
of freedom which acquire a large transverse momentum
due to a hard-scattering event and subsequently form a
jet due to multiple soft and collinear emissions. The area
of jet substructure is aimed at quantifying and utilizing
the radiation pattern inside jets [1–3]. Jets and their
substructure have been studied both in pp and heavy-
ion AA collisions. In heavy-ion collisions the Quark
Gluon Plasma (QGP) is formed which is a state of
matter where quarks and gluons are unbound and the
QGP is conjectured to have existed shortly after the Big
Bang. By comparing vacuum jets (pp) to their coun-
terparts in heavy-ion collisions which have traversed the
hot and dense nuclear matter, information about the
QGP can be obtained. The modification of jets in heavy-
ion collisions is typically quantified in terms of the nu-
clear modification factor which is given by the ratio of
the heavy-ion cross section and a rescaled pp baseline
RAA = d�AA/(hNcollid�pp). From the inclusive jet cross
section, it was found that only roughly half of the jets are
produced in heavy-ion collisions compared to pp []. In
addition, various jet substructure observables have been
measured in AA collisions. It turns out that some ob-
servables are consistent with no modification while oth-
ers are significantly modified due to the presence of the
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§ fmringer@lbl.gov

FIG. 1. Schematic illustration of jets in pp (left) and heavy-
ion AA (right) collisions. Interactions with the Quark-Gluon
Plasma can lead to a modification of the jet substructure.
By training a classifier (fully supervised), the machine learns
the relevant information that distinguishes jets in pp and AA
collisions.

QGP []. Significant theoretical e↵ort have been made to
compute and predict the modification of jet observables
in heavy-ion collisions [4–18].

(Cite somewhere [19])

In general, we identified guiding principles to design
suitable jet substructure observables to obtain informa-
tion about the QGP. The first criterion is driven by theo-
retical considerations in pp collisions. For example, often
observables are chosen which Infrared Collinear (IRC)
Safe which means that they can be calculated in per-

Figure 8. Distributions of observables in pp and AA collisions which have already been mea-
sured by experimental collaborations and examples of the machine-learned observables using the
N -subjettiness and EFP basis.

The corresponding ROC curve and the distribution of this ML-learned observable are shown

in Figs. 7, 8, respectively. We find that despite the simplicity of the machine-learned EFP

observable, it outperforms the other “traditional” observables. The intriguing aspect of

observables which involve a relatively small number of EFPs, as in Eq. (4.7), are that they

are generally analytically tractable within perturbative QCD.

5 Information loss: the underlying event and background subtraction

The large, fluctuating underlying event produced by the QGP causes notorious experi-

mental and theoretical challenges in heavy-ion collisions – in particular, by limiting which

observables can be reliably measured. Typically, background subtraction procedures are

applied in order to mitigate this problem. Systematic uncertainties associated with the

subtraction are estimated in order to adequatly capture the lack of exact knowledge of

which particles arise from the underlying event, and which from the jet.

From the perspective of information content, this presents two distinct mechanisms by

which the information in jet quenching can be lost. First, the fluctuating underlying event

can be viewed as a source of noise. One cannot distinguish particles arising from underlying
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Complementary to Bayesian approach

First step in a new paradigm: data-driven design of complete set of calculable observables

1. Design the most strongly modified observable that is theoretically calculable

2. Optimize discriminating power vs. complexity (trade d. power for simplicity)

Symbolic regression

max
cG

dσAA

dσpp
(cG) − 1
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1
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

2
Physics Department, University of California, Berkeley, CA 94720, USA

(Dated: July 1, 2021)

In heavy-ion collisions the substructure of jets is modified compared to a rescaled proton-proton
baseline due to the presence of the Quark-Gluon Plasma (QGP). In this work, we employ machine
learning techniques to quantify how much information is contained in the nuclear modification
factor of jet substructure observables. We formulate the question about the information content as
a binary classification problem where the machine is trained to learn information that distinguishes
jets in proton-proton and heavy-ion collisions. We perform the classification task using i) deep sets
which includes Infrared-Collinear (IRC) safe and unsafe information, ii) a complete basis of IRC safe
jet substructure observables which is passed to a Dense Neural Network (DNN) and iii) from the
trained DNN we identify optimal observables using symbolic regression. As a proof of concept, we
perform our analysis using parton shower event generator models but we expect that the proposed
framework can be applied directly to the raw data for which we outline possible future directions.
We expect that the automated design of suitable observables for heavy-ion collisions can provide
guidance for extracting information about the QGP from jet substructure data. In addition, the
proposed framework can also be applied to event-wide data samples in heavy-ion collisions and at
the future Electron-Ion Collider.

I. INTRODUCTION

Jets are highly energetic and collimated sprays of par-
ticles which are observed in the detectors of high-energy
scattering experiments such as RHIC and the LHC. They
directly reflect the underlying quark and gluon degrees
of freedom which acquire a large transverse momentum
due to a hard-scattering event and subsequently form a
jet due to multiple soft and collinear emissions. The area
of jet substructure is aimed at quantifying and utilizing
the radiation pattern inside jets [1–3]. Jets and their
substructure have been studied both in pp and heavy-
ion AA collisions. In heavy-ion collisions the Quark
Gluon Plasma (QGP) is formed which is a state of
matter where quarks and gluons are unbound and the
QGP is conjectured to have existed shortly after the Big
Bang. By comparing vacuum jets (pp) to their coun-
terparts in heavy-ion collisions which have traversed the
hot and dense nuclear matter, information about the
QGP can be obtained. The modification of jets in heavy-
ion collisions is typically quantified in terms of the nu-
clear modification factor which is given by the ratio of
the heavy-ion cross section and a rescaled pp baseline
RAA = d�AA/(hNcollid�pp). From the inclusive jet cross
section, it was found that only roughly half of the jets are
produced in heavy-ion collisions compared to pp []. In
addition, various jet substructure observables have been
measured in AA collisions. It turns out that some ob-
servables are consistent with no modification while oth-
ers are significantly modified due to the presence of the

⇤ ylai@lbl.gov
† james.mulligan@berkeley.edu
‡ mploskon@lbl.gov
§ fmringer@lbl.gov

FIG. 1. Schematic illustration of jets in pp (left) and heavy-
ion AA (right) collisions. Interactions with the Quark-Gluon
Plasma can lead to a modification of the jet substructure.
By training a classifier (fully supervised), the machine learns
the relevant information that distinguishes jets in pp and AA
collisions.

QGP []. Significant theoretical e↵ort have been made to
compute and predict the modification of jet observables
in heavy-ion collisions [4–18].

(Cite somewhere [19])

In general, we identified guiding principles to design
suitable jet substructure observables to obtain informa-
tion about the QGP. The first criterion is driven by theo-
retical considerations in pp collisions. For example, often
observables are chosen which Infrared Collinear (IRC)
Safe which means that they can be calculated in per-

Figure 8. Distributions of observables in pp and AA collisions which have already been mea-
sured by experimental collaborations and examples of the machine-learned observables using the
N -subjettiness and EFP basis.

The corresponding ROC curve and the distribution of this ML-learned observable are shown

in Figs. 7, 8, respectively. We find that despite the simplicity of the machine-learned EFP
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observables which involve a relatively small number of EFPs, as in Eq. (4.7), are that they

are generally analytically tractable within perturbative QCD.

5 Information loss: the underlying event and background subtraction

The large, fluctuating underlying event produced by the QGP causes notorious experi-

mental and theoretical challenges in heavy-ion collisions – in particular, by limiting which
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applied in order to mitigate this problem. Systematic uncertainties associated with the
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which the information in jet quenching can be lost. First, the fluctuating underlying event
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Complementary to Bayesian approach

adds observables with small values of N . This is generally in line with our previous observa-

tions that significant information about jet quenching is in the soft physics. We emphasize,

however, that these results are model-dependent, and the procedure should be repeated

on experimental data in order to obtain nature’s maximally discriminating single observ-

ables. We also compared our results to regression algorithms with an `0 regularization

(NP-hard) and found similar results. The exact set of observables which is chosen can vary

somewhat when we run the Lasso regression with a di↵erent random seed. This is likely

due to the existence of multiple local minima and the shared information between di↵erent

N -subjettiness observables, see also Fig. 3. We also find that the discrimination power

increases only gradually as we allow for more observables to be included in the product

observable. This observation is in line with the findings of Ref. [119]. We expect that more

general symbolic regression techniques as developed for example in Ref. [120] can also be

adapted to identify suitable jet substructure observables which we plan to explore in the

future work. See also Ref. [121].

To illustrate the performance of the di↵erent observables, we show the corresponding

ROC curves in Fig. 7. As expected, solutions with more terms (lower values of �) lead to

better discriminating power at the expense of an increased complexity of the observable.

For comparison, we also plot the ROC curves of four observables which have already been

measured in heavy-ion collisions: the soft drop momentum sharing fraction zg [28, 30, 122,

123], the groomed jet radius [28, 114, 124–126], jet thrust [127, 128] and jet girth [129].

We observe that the machine-learned product observables outperform these observables.

The distributions of these observables are shown in Fig. 8. Note that the N -subjettiness

product observable distribution exhibits a large di↵erence between JEWEL and PYTHIA8

for O
ML
N�sub = 0. This indicates that a significant amount of the classification power is

related to the multiplicity of the jet, since ⌧�N vanishes when the jet constituent multiplicity

is < N . This aspect of the modification is highly model-dependent, however, and the exact

O
ML
N�sub found here should be taken for illustrative purposes only, and should be determined

using experimental data.

In addition to an N -subjettiness product observable ansatz, we consider a linear com-

bination of EFPs. As discussed above, EFPs form a linear basis of jet substructure observ-

ables making them ideally suited for a Lasso regression [96]. Here we preprocess the input

data to zero mean and unit variance. Analogous to the previous section, we determine the

coe�cients cG of

O
ML
EFP =

X

G2G
cG EFPG , (4.6)

except that now we use a Lasso regression instead of a “regular” linear regression which

will pick out only the most important terms. As an example, we use EFPs up to degree 4

and the Lasso regression with � = 0.001, for which we find a very stable result:

+ 3.54 ⇥ + 1.72 ⇥ � 3.82 ⇥ . (4.7)
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First step in a new paradigm: data-driven design of complete set of calculable observables

max
cG

dσAA

dσpp
(cG) − 1

1. Design the most strongly modified observable that is theoretically calculable

2. Optimize discriminating power vs. complexity (trade d. power for simplicity)
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“Optimal” classifier
Input: four-vectors of all jet particles

29

Systematic approach: how many observables does one need to measure?
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Three approaches to learn about the QGP

1. Single observables

2. Sets of observables

3. Particle-level information
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Encoding information in terms of observables
N-subjetiness basis and Energy Flow Polynomials
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Observable design

Goal: design a minimal set of observables that are theoretically calculable

Example: design a single observable that is maximally modified

We can determine the coefficients using symbolic regression

Lai, Mulligan, Płoskoń, Ringer JHEP 10, 011 (2022)

where  are energy flow polynomials EFPG𝒪ML = ∑
G∈𝒢

cG EFPG

e.g. 

Here zi is a measure of the energy of particle i and ✓ij is a pairwise distance measure of

particles i and j in the ⌘-� plane

zi =

✓
pT iP
j pTj

◆

, ✓ij = (�⌘ij +��ij)
�/2 , (3.6)

where (,�) are free parameters. For  6= 1, the EFPs are IRC unsafe [56]. Here, we limit

ourselves to the IRC-safe EFPs, and in particular (,�) = (1, 0.5). The number of edges

is the degree of the EFPs. Since the EFPs are a linear basis, any IRC-safe observable O

can be approximated as

O ⇡

X

G2G
cG EFPG , (3.7)

with coe�cients cG and G is a finite set of multigraphs. A simple example of the EFPs is

1

2
⇥ =

1

2

MX

i1=1

MX

i2=1

zi1zi2✓
2
i1i2 , (3.8)

which, for � = 1, is equal to the jet mass m2
J/p

jet 2
T up to power corrections in the jet radius.

The distributions and correlations of several EFPs in pp and AA collisions are shown in

Fig. 5. See Refs. [98] for more details.

Since EFPs constitute a linear basis of jet substructure observables, we make use of

a linear classifier. We train a linear discriminant on the pp vs. AA jet data set using

EFPs up to degree 7. We use an implementation with the EnergyFlow package [88] and

scikit-learn [127]. Since we train a linear classifier rather than a DNN, the result is not

directly comparable to the N -subjettiness DNN, but rather is complementary to it.

The corresponding ROC curves are shown in Fig. 6. We find that as we increase the

EFP dimension, the classification power increases. This is similar to the result with the N -

subjettiness basis in the sense that a large number of EFPs needs to be included indicating

that significant information is contained in the soft physics of jets. In fact, for EFPs up

to degree 7, which corresponds to 1000 observables, we do not yet observe a saturation of

the discriminating power. This corroborates our results in the previous section. We note

again that the performance of the di↵erent classifiers here depends on the choice of the

Monte Carlo model generator. Lastly, we note that there is no unique definition of the

amount of IRC-unsafe information. For example, while both the EFNs in section 3.1 and

the linear model of EFPs here have only access to IRC-safe information, they represent

di↵erent architectures and one may be trainable more e�ciently than the other (leading to

a better performance) depending on classification task.

4 Observable design

The machine learning algorithms described in Section 3 deliver powerful classification abil-

ity, and themselves can be used as observables that can be measured experimentally and
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EFPG = =
M

∑
i1=1

M

∑
i2=1

zi1zi2θ
2
i1,i2

max
cG

dσAA

dσpp
(cG) − 1Regularization allows us to choose complexity of allowed 

solution (e.g. how many nonzero coefficients)
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ML-assisted observable design
Lasso regression

O = ∏
N<K, β∈{0.5,1,2}

(τβ
N)

cNβ

          24 terms 
           4 terms 
           1 term 

α = 0.01
α = 0.1
α = 0.5

e.g. (τ2
1)1.437(τ2

5)0.068(τ2
6)1.712 × . . .

Stronger regularization drives  to zerocNβ

Figure 7. ROC curves for the Lasso regression using the N -subjettiness basis and EFPs. For
comparison we also show the result for typical observables in heavy-ion collisions.

The regularization parameter � provides a handle to balance the performance of the

classifier with the simplicity of the resulting observable. When � is small, a product

observable with strong classification performance but many terms will be found, and as

� is increased, a product observable with decreased classification performance but fewer

terms will be found. The convergence of the Lasso regression can be slow for a large

parameter space which is why we limit ourselves here to a relatively small number of input

observables. For several values of �, we find the following observables without background

for M = 15 in our Monte Carlo model studies:

� =0.5 : O
ML
N�sub = ⌧ (1)14 , (4.3)

� =0.1 : O
ML
N�sub =

⇣
⌧ (1)10

⌘0.071⇣
⌧ (1)11

⌘0.157⇣
⌧ (1)14

⌘0.649
⌧ (2)14 , (4.4)

� =0.01 : O
ML
N�sub =

⇣
⌧ (0.5)2

⌘0.608⇣
⌧ (2)4

⌘�0.186
⇥ ...⇥ ⌧ (2)14 (23 terms) . (4.5)

Since we can rescale the exponents by an overall factor without changing the performance

of the classifier, we choose the exponent of the rightmost factor in Eq. 4.2, in this case ⌧ (�)14 ,

as 1 for all values of �.

We find that the Lasso regression generally prefers large values of N . For su�ciently

large values of �, we find that the Lasso regression always picks only one observable which

turns out to be one of the N -subjettiness observables with the largest allowed value of N .

When � is lowered gradually, the Lasso regression adds additional N -subjettiness observ-

able with intermediate values of N . If we further lower �, the Lasso regression eventually

– 16 –

By training ML classifier and balancing the tradeoff of discriminating power 
and complexity, we can design the most strongly modified calculable observable

Lai, Mulligan, Płoskoń, Ringer JHEP 10, 011 (2022)





Realistic conditions include 
BACKRGOUND!

(aka heavy-ion underlying event) 



1. Background <=> Noise  
=> Loss of discrimination power 



1. Background <=> Noise  
=> Loss of discrimination power 

2. Finite accuracy of background subtraction 
=> Loss of signal/information



Jets within heavy-ion events
Adding realism to the problem - background and information loss

1. Background <=> Noise  
=> Loss of discrimination power 

2. Finite accuracy of background subtraction 
=> Loss of signal/information



Jets within heavy-ion events
Adding realism to the problem - background and information loss

1. Background <=> Noise  
=> Loss of discrimination power 

2. Finite accuracy of background subtraction 
=> Loss of signal/information



Jets within heavy-ion events
Adding realism to the problem - background and information loss

Introduction of the realistic conditions 
(experimental backgrounds)  

critical applicability test! 

ML w/o UE not OK!

1. Background <=> Noise  
=> Loss of discrimination power 

2. Finite accuracy of background subtraction 
=> Loss of signal/information



24

Experimental guidance from ML

To what extent does the background destroy discriminating power?

Figure 11. ROC curves comparing the performance with (i) Hard jet particles only, (ii) Hard jet
particles and background particles, with constituent subtraction applied (for two di↵erent values of
Rmax, and (iii) Hard jet particles and background particles, without any background subtraction
applied

possible, even to the extent of unfolding full events and thereby enabling the training of a

classifier directly on corrected particles.

There are several additional challenges in performing these measurements compared

to the Monte Carlo studies presented above. First, the detector conditions between the

proton-proton and heavy-ion data taking periods may be di↵erent – and the classifier will

naively learn these di↵erences. Second, in the pp � AA jet sample, one must ensure that

only soft particles – and not hard jets – enter the distribution from the embedded heavy-ion

event. Third, the size of the jet sample is limited by the available statistics recorded by

the experiment, which in turn can limit the performance of the classifier. These challenges

are each surmountable, and we are optimistic that such an analysis can be performed at

the LHC.

We propose that each of the three complementary studies in Sections 3-5 can be per-

formed on experimental data:

• Measuring the ROC curve. The measured ROC curve can serve as an observable

that can be compared to Monte Carlo event generators. Moreover, the distribution

of information content with complete sets of jet substructure observables can provide

a di↵erential test of jet quenching models, to the extent that highly soft-sensitive

observables, such as high-N N -subjettiness or high-dimension EFPs, can be reliably

measured in the presence of the heavy-ion underlying event.
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First study quantifying the information 
loss of background subtraction algorithms

Delicate challenge: soft information is crucial to 
discriminate, yet UE fundamentally prevents 
much of this information from being accessed

Large, irrecoverable information loss
Soft physics 
Background subtraction algorithm

Lai, Mulligan, Płoskoń, Ringer JHEP 10, 011 (2022)
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Information loss due to background

Figure 9. ROC curves for PFNs trained with (i) PYTHIA8/JEWEL jets, (ii) jets clustered from a
combination of PYTHIA8/JEWEL events with a thermal background, with event-wide constituent
subtraction applied (Rmax = 0.25), (iii) PYTHIA8/JEWEL jets only considering jet constituents
with pT > 1 GeV, and (iv) jets clustered from a combination of PYTHIA8/JEWEL events with a
thermal background, only considering jet constituents with pT > 1 GeV, with event-wide constituent
subtraction applied (Rmax = 0.25).

event from those correlated to the jet, and so to the extent that the noise distribution

overlaps with the signal distribution, the ability to distinguish the two is irrecoverably

reduced. Second, background subtraction algorithms themselves can cause information

loss. Since background subtraction inherently involves removal of particles from the jet,

and one does not have exact knowledge of which particles arise from the underlying event,

this procedure strictly results in information loss.

The jet classification methods used in Section 3 can be used to evaluate the magnitude

of each of these contributions. Within the context of the parton shower models considered,

we assess the overall impact of the underlying event on the jet classification performance

by comparing a PFN trained only on the hard jet particles to a PFN trained on the

combination of jet and background particles (after performing constituent subtraction).

Figure 9 shows that there is a dramatic decrease in the classification power due to the

presence of the underlying event. We also plot PFNs trained on jet particles with pT >

1 GeV. Comparing the ROC curves with and without this requirement, we find that in the

case without background, a large discrimination power resides in the soft physics – whereas

in the case with background, the presence of soft information makes no di↵erence. That is,

in the presence of background, su�ciently soft discrimination is no longer useful – and the

discrimination is dominated by hard physics. This observation presents a delicate challenge

– 19 –

Delicate challenge: soft information crucial, yet 
background prevents from being accessed

Figure 11. ROC curves comparing the performance with (i) Hard jet particles only, (ii) Hard jet
particles and background particles, with constituent subtraction applied (for two di↵erent values of
Rmax, and (iii) Hard jet particles and background particles, without any background subtraction
applied

possible, even to the extent of unfolding full events and thereby enabling the training of a

classifier directly on corrected particles.

There are several additional challenges in performing these measurements compared

to the Monte Carlo studies presented above. First, the detector conditions between the

proton-proton and heavy-ion data taking periods may be di↵erent – and the classifier will

naively learn these di↵erences. Second, in the pp � AA jet sample, one must ensure that

only soft particles – and not hard jets – enter the distribution from the embedded heavy-ion

event. Third, the size of the jet sample is limited by the available statistics recorded by

the experiment, which in turn can limit the performance of the classifier. These challenges

are each surmountable, and we are optimistic that such an analysis can be performed at

the LHC.

We propose that each of the three complementary studies in Sections 3-5 can be per-

formed on experimental data:

• Measuring the ROC curve. The measured ROC curve can serve as an observable

that can be compared to Monte Carlo event generators. Moreover, the distribution

of information content with complete sets of jet substructure observables can provide

a di↵erential test of jet quenching models, to the extent that highly soft-sensitive

observables, such as high-N N -subjettiness or high-dimension EFPs, can be reliably

measured in the presence of the heavy-ion underlying event.
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In heavy-ion collisions the substructure of jets is modified compared to a rescaled proton-proton
baseline due to the presence of the Quark-Gluon Plasma (QGP). In this work, we employ machine
learning techniques to quantify how much information is contained in the nuclear modification
factor of jet substructure observables. We formulate the question about the information content as
a binary classification problem where the machine is trained to learn information that distinguishes
jets in proton-proton and heavy-ion collisions. We perform the classification task using i) deep sets
which includes Infrared-Collinear (IRC) safe and unsafe information, ii) a complete basis of IRC safe
jet substructure observables which is passed to a Dense Neural Network (DNN) and iii) from the
trained DNN we identify optimal observables using symbolic regression. As a proof of concept, we
perform our analysis using parton shower event generator models but we expect that the proposed
framework can be applied directly to the raw data for which we outline possible future directions.
We expect that the automated design of suitable observables for heavy-ion collisions can provide
guidance for extracting information about the QGP from jet substructure data. In addition, the
proposed framework can also be applied to event-wide data samples in heavy-ion collisions and at
the future Electron-Ion Collider.

I. INTRODUCTION

Jets are highly energetic and collimated sprays of par-
ticles which are observed in the detectors of high-energy
scattering experiments such as RHIC and the LHC. They
directly reflect the underlying quark and gluon degrees
of freedom which acquire a large transverse momentum
due to a hard-scattering event and subsequently form a
jet due to multiple soft and collinear emissions. The area
of jet substructure is aimed at quantifying and utilizing
the radiation pattern inside jets [1–3]. Jets and their
substructure have been studied both in pp and heavy-
ion AA collisions. In heavy-ion collisions the Quark
Gluon Plasma (QGP) is formed which is a state of
matter where quarks and gluons are unbound and the
QGP is conjectured to have existed shortly after the Big
Bang. By comparing vacuum jets (pp) to their coun-
terparts in heavy-ion collisions which have traversed the
hot and dense nuclear matter, information about the
QGP can be obtained. The modification of jets in heavy-
ion collisions is typically quantified in terms of the nu-
clear modification factor which is given by the ratio of
the heavy-ion cross section and a rescaled pp baseline
RAA = d�AA/(hNcollid�pp). From the inclusive jet cross
section, it was found that only roughly half of the jets are
produced in heavy-ion collisions compared to pp []. In
addition, various jet substructure observables have been
measured in AA collisions. It turns out that some ob-
servables are consistent with no modification while oth-
ers are significantly modified due to the presence of the
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FIG. 1. Schematic illustration of jets in pp (left) and heavy-
ion AA (right) collisions. Interactions with the Quark-Gluon
Plasma can lead to a modification of the jet substructure.
By training a classifier (fully supervised), the machine learns
the relevant information that distinguishes jets in pp and AA
collisions.

QGP []. Significant theoretical e↵ort have been made to
compute and predict the modification of jet observables
in heavy-ion collisions [4–18].

(Cite somewhere [19])

In general, we identified guiding principles to design
suitable jet substructure observables to obtain informa-
tion about the QGP. The first criterion is driven by theo-
retical considerations in pp collisions. For example, often
observables are chosen which Infrared Collinear (IRC)
Safe which means that they can be calculated in per-
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QGP []. Significant theoretical e↵ort have been made to
compute and predict the modification of jet observables
in heavy-ion collisions [4–18].

(Cite somewhere [19])

In general, we identified guiding principles to design
suitable jet substructure observables to obtain informa-
tion about the QGP. The first criterion is driven by theo-
retical considerations in pp collisions. For example, often
observables are chosen which Infrared Collinear (IRC)
Safe which means that they can be calculated in per-
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Figure 8. Distributions of observables in pp and AA collisions which have already been mea-
sured by experimental collaborations and examples of the machine-learned observables using the
N -subjettiness and EFP basis.

The corresponding ROC curve and the distribution of this ML-learned observable are shown

in Figs. 7, 8, respectively. We find that despite the simplicity of the machine-learned EFP

observable, it outperforms the other “traditional” observables. The intriguing aspect of

observables which involve a relatively small number of EFPs, as in Eq. (4.7), are that they

are generally analytically tractable within perturbative QCD.

5 Information loss: the underlying event and background subtraction

The large, fluctuating underlying event produced by the QGP causes notorious experi-

mental and theoretical challenges in heavy-ion collisions – in particular, by limiting which

observables can be reliably measured. Typically, background subtraction procedures are

applied in order to mitigate this problem. Systematic uncertainties associated with the

subtraction are estimated in order to adequatly capture the lack of exact knowledge of

which particles arise from the underlying event, and which from the jet.

From the perspective of information content, this presents two distinct mechanisms by

which the information in jet quenching can be lost. First, the fluctuating underlying event

can be viewed as a source of noise. One cannot distinguish particles arising from underlying
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In heavy-ion collisions the substructure of jets is modified compared to a rescaled proton-proton
baseline due to the presence of the Quark-Gluon Plasma (QGP). In this work, we employ machine
learning techniques to quantify how much information is contained in the nuclear modification
factor of jet substructure observables. We formulate the question about the information content as
a binary classification problem where the machine is trained to learn information that distinguishes
jets in proton-proton and heavy-ion collisions. We perform the classification task using i) deep sets
which includes Infrared-Collinear (IRC) safe and unsafe information, ii) a complete basis of IRC safe
jet substructure observables which is passed to a Dense Neural Network (DNN) and iii) from the
trained DNN we identify optimal observables using symbolic regression. As a proof of concept, we
perform our analysis using parton shower event generator models but we expect that the proposed
framework can be applied directly to the raw data for which we outline possible future directions.
We expect that the automated design of suitable observables for heavy-ion collisions can provide
guidance for extracting information about the QGP from jet substructure data. In addition, the
proposed framework can also be applied to event-wide data samples in heavy-ion collisions and at
the future Electron-Ion Collider.

I. INTRODUCTION

Jets are highly energetic and collimated sprays of par-
ticles which are observed in the detectors of high-energy
scattering experiments such as RHIC and the LHC. They
directly reflect the underlying quark and gluon degrees
of freedom which acquire a large transverse momentum
due to a hard-scattering event and subsequently form a
jet due to multiple soft and collinear emissions. The area
of jet substructure is aimed at quantifying and utilizing
the radiation pattern inside jets [1–3]. Jets and their
substructure have been studied both in pp and heavy-
ion AA collisions. In heavy-ion collisions the Quark
Gluon Plasma (QGP) is formed which is a state of
matter where quarks and gluons are unbound and the
QGP is conjectured to have existed shortly after the Big
Bang. By comparing vacuum jets (pp) to their coun-
terparts in heavy-ion collisions which have traversed the
hot and dense nuclear matter, information about the
QGP can be obtained. The modification of jets in heavy-
ion collisions is typically quantified in terms of the nu-
clear modification factor which is given by the ratio of
the heavy-ion cross section and a rescaled pp baseline
RAA = d�AA/(hNcollid�pp). From the inclusive jet cross
section, it was found that only roughly half of the jets are
produced in heavy-ion collisions compared to pp []. In
addition, various jet substructure observables have been
measured in AA collisions. It turns out that some ob-
servables are consistent with no modification while oth-
ers are significantly modified due to the presence of the
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FIG. 1. Schematic illustration of jets in pp (left) and heavy-
ion AA (right) collisions. Interactions with the Quark-Gluon
Plasma can lead to a modification of the jet substructure.
By training a classifier (fully supervised), the machine learns
the relevant information that distinguishes jets in pp and AA
collisions.

QGP []. Significant theoretical e↵ort have been made to
compute and predict the modification of jet observables
in heavy-ion collisions [4–18].

(Cite somewhere [19])

In general, we identified guiding principles to design
suitable jet substructure observables to obtain informa-
tion about the QGP. The first criterion is driven by theo-
retical considerations in pp collisions. For example, often
observables are chosen which Infrared Collinear (IRC)
Safe which means that they can be calculated in per-
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• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

Why #4 :  gluon saturation ?
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Can be applied at LHC, EIC

Bayesian inference 
to test universal, 
non-linear scaling 

Design sets of observables to test models

EIC Yellow report, ALICE FoCal Proposal



Thank you!



Encoding information in terms of observables
N-subjetiness basis and Energy Flow Polynomials
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By balancing the tradeoff of discriminating power and complexity, 
we can design the most strongly modified calculable observable

Figure 8. Distributions of observables in pp and AA collisions which have already been mea-
sured by experimental collaborations and examples of the machine-learned observables using the
N -subjettiness and EFP basis.

The corresponding ROC curve and the distribution of this ML-learned observable are shown

in Figs. 7, 8, respectively. We find that despite the simplicity of the machine-learned EFP

observable, it outperforms the other “traditional” observables. The intriguing aspect of

observables which involve a relatively small number of EFPs, as in Eq. (4.7), are that they

are generally analytically tractable within perturbative QCD.

5 Information loss: the underlying event and background subtraction

The large, fluctuating underlying event produced by the QGP causes notorious experi-

mental and theoretical challenges in heavy-ion collisions – in particular, by limiting which

observables can be reliably measured. Typically, background subtraction procedures are

applied in order to mitigate this problem. Systematic uncertainties associated with the

subtraction are estimated in order to adequatly capture the lack of exact knowledge of

which particles arise from the underlying event, and which from the jet.

From the perspective of information content, this presents two distinct mechanisms by

which the information in jet quenching can be lost. First, the fluctuating underlying event

can be viewed as a source of noise. One cannot distinguish particles arising from underlying
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ML-assisted observable design provides guidance to experiments and theory — 
can then measure and calculate designed observables using traditional methods

Lai, Mulligan, Płoskoń, Ringer JHEP 10 (2022) 011

“Symbolic regression” 
using Lasso 

Approximate classifier with 
small number of features

Figure 7. ROC curves for the Lasso regression using the N -subjettiness basis and EFPs. For
comparison we also show the result for typical observables in heavy-ion collisions.

The regularization parameter � provides a handle to balance the performance of the

classifier with the simplicity of the resulting observable. When � is small, a product

observable with strong classification performance but many terms will be found, and as

� is increased, a product observable with decreased classification performance but fewer

terms will be found. The convergence of the Lasso regression can be slow for a large

parameter space which is why we limit ourselves here to a relatively small number of input

observables. For several values of �, we find the following observables without background

for M = 15 in our Monte Carlo model studies:

� =0.5 : O
ML
N�sub = ⌧ (1)14 , (4.3)

� =0.1 : O
ML
N�sub =

⇣
⌧ (1)10

⌘0.071⇣
⌧ (1)11

⌘0.157⇣
⌧ (1)14

⌘0.649
⌧ (2)14 , (4.4)

� =0.01 : O
ML
N�sub =

⇣
⌧ (0.5)2

⌘0.608⇣
⌧ (2)4

⌘�0.186
⇥ ...⇥ ⌧ (2)14 (23 terms) . (4.5)

Since we can rescale the exponents by an overall factor without changing the performance

of the classifier, we choose the exponent of the rightmost factor in Eq. 4.2, in this case ⌧ (�)14 ,

as 1 for all values of �.

We find that the Lasso regression generally prefers large values of N . For su�ciently

large values of �, we find that the Lasso regression always picks only one observable which

turns out to be one of the N -subjettiness observables with the largest allowed value of N .

When � is lowered gradually, the Lasso regression adds additional N -subjettiness observ-

able with intermediate values of N . If we further lower �, the Lasso regression eventually
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Observable design


