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BDMPS-Z Splitting Probability
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G(B,, ty; B4, t;) is Green’s function of Hamiltonian, # describing
momentum diffusion in directions transverse to jet propagation
‘H depends on:

B asymptotic masses, M
m transverse scattering rate, C(R )

m.,,C(k ) can be computed in finite temperature
perturbation theory




Classical Corrections to Jet Broadening




m Both receive m., and C(k ) classical contributions
i.e corrections coming from exchange of gluons between

medium and parton that are < gT

>1
1

= np(w) = W
T




m Thanks to observation from [Caron-Huot, 2009], these
classical corrections can be computed in Electrostatic QCD
(EQCD)

m EQCD is a 3 dimensional theory of static modes
= Can be studied on the lattice!
= Paved way for non-perturbative (NP) determination of
classical corrections to C(k | )!

m For m, situation, see talk by Jacopo Ghiglieri, Tue 10h50



m Series of papers
[Panero et al., 2014,

=
Q
>

Moore et al., 2021, = |
Schlichting and Soudi, 2021], B —
culminated with NP determination ‘33);,10—3 22t 3 =
of in-medium splitting rate for ; 104 T-soMy
medium of finite size ] D
0

m Difference between rate from LO Bvolution time: lfm/q]
kernel and NP kernel can be up to
50%!




Quantum Corrections to Jet Broadening




m Transverse momentum
broadening coefficient, §(x) can
be related to the transverse
scattering rate, C(k )

~ _ d’RL 2 s (0,0 (L,0)
a0 = [ Grekic(k) N

Jim (W(x 1)) = exp(=C(x1)L)

(0,21) (L, 1)

m W(x, ) is a Wilson loop defined in  LGhiglieri and Teaney, 2015]

the (x™,x.) plane
[Casalderrey-Solana and Teaney, 2007,
D'Eramo et al., 2011,

Benzke et al., 2013]




m O(g) classical contributions to g from soft scale ~ gT
calculated perturbatively in a weakly coupled QGP by
[Caron-Huot, 2009]

m O(g?) corrections found to have double logarithmic
enhancement~ In*(Limed/Tmin) bY [Liou et al., 2013](LMW) and
separately by [Blaizot et al., 2014](BDIM) for a medium with
static scattering centers

m These are radiative, quantum corrections, coming from
keeping track of the recoil during the medium-induced
emission of a gluon

m Resummation of double logs performed recently
[Caucal and Mehtar-Tani, 2022]
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m LMW and BDIM argued that these quantum corrections come
from the single-scattering regime
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m LMW and BDIM calculations used the Harmonic Oscillator
Approximation (HOA), which is more well-suited to multiple
scattering regime

m Both calculations also assume medium to be composed of
static scattering centers

— Not clear how phase spaces of classical O(g) and
quantum O(g?) corrections are connected or if there is some
overlap

Which is larger: KO(g) or In*(#)0O(g?)?

Hard to say... But can definitely make a start by revisiting
computation of quantum corrections
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Our Calculation




How can we adapt BDIM/LMW result to weakly coupled QGP?
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Is this consistent with single scattering?




R Cn . #*/Go o 1T d
SGimw(p) = s RQo/ T/ =
T, q

T T 2 W ~ LT3
© Qo ~g'T

min

Need to demand g“T372

>T

1
= Tmin should be > ﬁ
1. . . .
But T is the mean free time between multiple scatterings!

= Would lead us away from single scattering regime!



= In order to stay away from multiple scattering regime,
must account for thermal effects

~ asCrp . P /8o dr  [HT d
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Introduce intermediate regulator
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’ Intermediate regulator 7,
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m Compute C(k, ) using HTL resummation instead of Random
Colour Approximation

m Investigate which logs are produced by soft, collinear modes
through a semi-collinear
[Ghiglieri et al., 2013, Ghiglieri et al., 2016] process
associated with formation time 7gmi ~ 1/gT

Only spacelike interactions with medium Now timelike interactions are allowed too

= Going beyond instantaneous approximation!
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Why is it that region 2’and 4 do not contribute to the double Logs?



First, note that

7I|_rr;0< +2nB(w)) :1+2wl—1 (2)

The absence of the IR scale in any logarithms can then be seen
by looking at the following integral, with vr < T < vyy
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Region of phase space from which classical O(g)
corrections emerge [Caron-Huot, 2009]
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How can we understapd the transition to power law enhancement
in regions 2 and 4?



Can understand transition by looking at w integrand, f(w)
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’ Our results include power law corrections depending on our IR cutoff‘

Inw
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They cancel against cutoff-dependent corrections
computed from [Caron-Huot, 2009]= Non-trivial check!




Conclusions and Outlook




m Double logarithmic corrections in strict single scattering
regime computed within the setting of a weakly coupled
QGP

m Showed that original BDIM/LMW phase space overlaps with
phase space for classical corrections

m Can show how our result fits with respect to these emended
BDIM/LMW corrections as well as the classical corrections

m Computed corrections allowing for timelike processes and
showed that they are subleading




HOA not well-suited to single-scattering

=-So how can we go beyond it?

asCr, 5 p* asCr . )
In“ — > [n® —
do Gowr = a(p) wr
2

P

where §(p) « In o

D

dGew(p) =

p separates us from neighbouring region
with simultaneously single-scattering and multiple scatterings

Appearance of g, in double log is an artefact of
lack of understanding of transition between
single scattering and mutiple scattering regimes




HOA not well-suited to single-scattering

=-So how can we go beyond it?

. asCr, 5 p* asCr . )
) = | = > In© —
Qan(p) = 2 Rg01n L o) -
R p?
where In —
4(p) o< In m

Need to solve transverse momentum-dependent LPM equation
without HOA [Ghiglieri and Weitz, 2022] in order to
shed light on how these issues could be addressed




THANKS FOR LISTENING!
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m Can think of sticking together
amplitude and conjugate
amplitude to get diagrams on the
right

m Black lines represent hard parton
in the amplitude and conjugate
amplitude

m Red gluons are bremsstrahlung, \gj

represented by thermal
propagators

m Blue gluons are those that are
exchanged with the medium and
are represented by HTL
propagators
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Can understand transition by looking at w integrand, f(w)
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HOA not well-suited to single-scattering

=S50 how can we go beyond it?
~ asCr, p OésCR
0 = In® — >
Gow(1) b 0 G

()In

p2
where g(p) o In e
D

Improved Opacity Expansion [Barata et al., 2021]
could be used to solve resummation equation in order to better
understand transition from single scattering to multiple scattering
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N = 1 term in opacity expansion emerges from dipole picture
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m T, hard scale associated with energy of individual particles
= hard-hard interactions can be described perturbatively

m gT, soft scale associated with energy of collective excitations
= soft-soft interactions can also be described
perturbatively

m g°T, ultrasoft scale is associated with nonperturbative
physics
= loops can be added at no extra cost (Linde problem)
= cannot use perturbation theory



m For hard-soft interactions, we are not so lucky either...
Turns out that one can add loops for free
— perturbative expansion breaks down

m Hard Thermal Loop (HTL) effective theory comes to the
rescue, allowing us to resum these loops

HTL
RLosummadtian

e e TR D R RY NN



m Rewrite frequencing integral [ dw/27 as sum over

Matsubara modes and integrate out all but zero Matsubara
mode
= Dimensional Reduction

m EQCD Lagrangian

1
Leqep = 20, Tr FjjFij 4+ Tr D;®D;® + mj Tr & + A (Tr <D2)2
3d
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