Quarkonium transport in strongly coupled plasmas

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Aschaffenburg, Germany March 28, 2023

Bruno Scheihing-Hitschfeld (MIT) with Xiaojun Yao (UW) and Govert Nijs (MIT) based on 2107.03945, 2205.04477, 2304.XXXXX

Q: c or b quark

 $ar{Q}$: $ar{c}$ or $ar{b}$ quark

M: heavy quark mass

 $ar{Q}$: $ar{c}$ or $ar{b}$ quark

 $M \gg Mv \gg Mv^2$

M: heavy quark mass

 $M \gg Mv \gg Mv^2$

M: heavy quark mass

M: heavy quark mass

At high T, quarkonium "melts" because the medium screens the interactions between heavy quarks (Matsui & Satz 1986)

$$Q\bar{Q}$$
 melts if $r \sim \frac{1}{Mv} \gg \frac{1}{T}$

M: heavy quark mass

v: typical relative speed

color octet; "unbound" state

M: heavy quark mass

M: heavy quark mass

v: typical relative speed

Q

color octet; "unbound" state

 \implies most of quarkonium starts to form when $Mv \gtrsim T$

Q: c or b quark \bar{Q} : \bar{c} or \bar{b} quark

M: heavy quark mass

v: typical relative speed

Q

color octet; "unbound" state

$M \gg Mv \gg Mv^2$

M: heavy quark mass

[*] N. Brambilla, A. Pineda, J. Soto. A. Vairo

hep-ph/9907240, hep-ph/0410047

v: typical relative speed

⇒ We need to understand the above dynamics in the hierarchy

 \Longrightarrow pNRQCD [*]

color octet; "unbound" state

Q

 $Mv \gg T$

Q: c or b quark

 $ar{Q}$: $ar{c}$ or $ar{b}$ quark

Transitions between quarkonium energy levels (the system)

$$\frac{1}{\tau_I} \sim \frac{H_{\text{int}}^2}{T} \sim T \frac{T^2}{(Mv)^2}$$

$$\mathcal{L}_{\text{pNRQCD}} = \mathcal{L}_{\text{light quarks}} + \mathcal{L}_{\text{gluon}} + \int d^3r \text{Tr}_{\text{color}} \left[S^{\dagger} (i\partial_0 - H_s) S + O^{\dagger} (iD_0 - H_o) O \right]$$

$$+ {}_{3}V_{A}(O^{\dagger}\mathbf{r} \cdot g\mathbf{E}S + h.c.) + \frac{V_{B}}{2}O^{\dagger}\{\mathbf{r} \cdot g\mathbf{E}, O\} + \cdots$$

Transitions between quarkonium energy levels (the system)

$$\frac{1}{\tau_I} \sim \frac{H_{\text{int}}^2}{T} \sim T \frac{T^2}{(Mv)^2}$$

$$\mathcal{L}_{\text{pNRQCD}} = \mathcal{L}_{\text{light quarks}} + \mathcal{L}_{\text{gluon}} + \int d^3r \text{Tr}_{\text{color}} \left[S^{\dagger} (i\partial_0 - H_s) S + O^{\dagger} (iD_0 - H_o) O \right]$$

$$+ {}_{3}V_{A}(O^{\dagger}\mathbf{r} \cdot g\mathbf{E}S + h.c.) + \frac{V_{B}}{2}O^{\dagger}\{\mathbf{r} \cdot g\mathbf{E}, O\} + \cdots$$

Transitions between quarkonium energy levels (the system)

$$\frac{1}{\tau_I} \sim \frac{H_{\text{int}}^2}{T} \sim T \frac{T^2}{(Mv)^2}$$

$$\mathcal{L}_{\text{pNRQCD}} = \mathcal{L}_{\text{light quarks}} + \mathcal{L}_{\text{gluon}} + \int d^3r \text{Tr}_{\text{color}} \left[S^{\dagger} (i\partial_0 - H_s) S + O^{\dagger} (iD_0 - H_o) O \right]$$

$$+ V_A (O^{\dagger} \mathbf{r} \cdot g\mathbf{E}S + \mathbf{h.c.}) + \frac{V_B}{2} O^{\dagger} \{\mathbf{r} \cdot g\mathbf{E}, O\} + \cdots$$

Transitions between quarkonium energy levels (the system)

$$\frac{1}{\tau_I} \sim \frac{H_{\text{int}}^2}{T} \sim T \frac{T^2}{(Mv)^2}$$

$$\mathcal{L}_{\text{pNRQCD}} = \mathcal{L}_{\text{light quarks}} + \mathcal{L}_{\text{gluon}} + \int d^3r \text{Tr}_{\text{color}} \left[S^{\dagger} (i\partial_0 - H_s) S + O^{\dagger} (iD_0 - H_o) O \right]$$

$$+ {}_{3}V_{A}(O^{\dagger}\mathbf{r} \cdot g\mathbf{E}S + \mathbf{h.c.}) + \frac{V_{B}}{2}O^{\dagger}\{\mathbf{r} \cdot g\mathbf{E}, O\} + \cdots$$

How does the QGP enter the dynamics?

for quarkonia transport

 $(R_1, -\infty)$ $(R_2, -\infty)$

for quarkonia transport

"bound" state: color singlet

for quarkonia transport

the "unbound"

QGP chromoelectric correlators

for quarkonia transport

 $[g_E^{++}]_{i_2i_1}^{>}(t_2,t_1,\mathbf{R}_2,\mathbf{R}_1) = \langle (E_{i_2}(\mathbf{R}_2,t_2)\mathcal{W}_2)^a (\mathcal{W}_1 E_{i_1}(\mathbf{R}_1,t_1))^a \rangle_T$

QGP chromoelectric correlators

for quarkonia transport

the "unbound"
state carries
color charge
and interacts
with the
medium

"unbound" state: color octet

medium-induced transition

"bound" state: color singlet

for quarkonia transport

Summing the one-gluon insertions along the octet QQ path generates a Wilson line:

$$\mathcal{W}_{[t_2,t_1]}^{ab} = \left[\operatorname{P} \exp \left(ig \int_{t_1}^{t_2} dt A_0^c(t) T_{\operatorname{adj}}^c \right) \right]^{ab}$$

the "unbound" state carries color charge and interacts with the medium

"unbound" state: color octet

edium-induced transition

"bound" state: color singlet

$$[g_E^{++}]_{i_2i_1}^{>}(t_2,t_1,\mathbf{R}_2,\mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2,t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1,t_1) \right)^a \right\rangle_T$$

for quarkonia transport

the "unbound"
state carries
color charge
and interacts
with the
medium

"unbound" state: color octet

"bound" state:

color singlet

for quarkonia transport

"bound" state: color singlet

medium-induced transition

"unbound" state: color octet

the "unbound" state carries color charge and interacts with the medium

5

Why are these correlators interesting?

Quarkonium in the quantum brownian motion limit

 $Mv \gg T \gg Mv^2$ (Brambilla et al.)

$$\frac{d\rho_{S}(t)}{dt} = -i\left[H_{S} + \Delta H_{S}, \rho_{S}(t)\right] + \kappa_{\text{adj}}\left(L_{\alpha i}\rho_{S}(t)L_{\alpha i}^{\dagger} - \frac{1}{2}\left\{L_{\alpha i}^{\dagger}L_{\alpha i}, \rho_{S}(t)\right\}\right)$$

The correlators determine the transport coefficients:

$$\gamma_{\text{adj}} \equiv \frac{g^2}{6N_c} \text{Im} \int_{-\infty}^{\infty} ds \, \langle \mathcal{T} E^{a,i}(s, \mathbf{0}) \mathcal{W}^{ab}[(s, \mathbf{0}), (0, \mathbf{0})] E^{b,i}(0, \mathbf{0}) \rangle ,$$

$$\kappa_{\text{adj}} \equiv \frac{g^2}{6N_c} \text{Re} \int_{-\infty}^{\infty} ds \, \langle \mathcal{T} E^{a,i}(s, \mathbf{0}) \mathcal{W}^{ab}[(s, \mathbf{0}), (0, \mathbf{0})] E^{b,i}(0, \mathbf{0}) \rangle .$$

Quarkonium in the quantum optical limit

Semiclassical approximation

+ $Mv \gg Mv^2$, T (Yao et al.)

$$\frac{dn_b(t, \mathbf{x})}{dt} = -\Gamma^{\text{diss}} n_b(t, \mathbf{x}) + \Gamma^{\text{form}}(t, \mathbf{x})$$

These correlators determine the dissociation and formation rates of quarkonia:

$$\Gamma^{\text{diss}} \propto \int \frac{\mathrm{d}^{3}\mathbf{p}_{\text{rel}}}{(2\pi)^{3}} \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |\langle \psi_{\mathcal{B}} | \mathbf{r} | \Psi_{\mathbf{p}_{\text{rel}}} \rangle|^{2} [g_{E}^{++}]_{ii}^{>} \left(q^{0} = E_{\mathcal{B}} - \frac{\mathbf{p}_{\text{rel}}^{2}}{M}, \mathbf{q}\right),$$

$$\Gamma^{\text{form}}(t, \mathbf{x}) \propto \int \frac{\mathrm{d}^{3}\mathbf{p}_{\text{cm}}}{(2\pi)^{3}} \frac{\mathrm{d}^{3}\mathbf{p}_{\text{rel}}}{(2\pi)^{3}} \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} |\langle \psi_{\mathcal{B}} | \mathbf{r} | \Psi_{\mathbf{p}_{\text{rel}}} \rangle|^{2} [g_{E}^{--}]_{ii}^{>} \left(q^{0} = \frac{\mathbf{p}_{\text{rel}}^{2}}{M} - E_{\mathcal{B}}, \mathbf{q}\right)$$

$$\times f_{\mathcal{S}}(\mathbf{x}, \mathbf{p}_{\text{cm}}, \mathbf{r} = 0, \mathbf{p}_{\text{rel}}, t).$$

A comparison with heavy quark diffusion

Different physics with the same building blocks

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[(U_{[\infty,t]} E_i(t) U_{[t,-\infty]})^{\dagger} \right]$$

$$\times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

l

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[(U_{[\infty,t]} E_i(t) U_{[t,-\infty]})^{\dagger} \right]$$

$$\times (U_{[\infty,0]} E_i(0) U_{[0,-\infty]}) \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

the heavy
quark carries
color charge
and interacts
with the
medium

heavy quark

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[(U_{[\infty,t]} E_i(t) U_{[t,-\infty]})^{\dagger} \right]$$

$$\times (U_{[\infty,0]} E_i(0) U_{[0,-\infty]}) \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

"kick" from the QGP: momentum transfer is effected

the heavy
quark carries
color charge
and interacts
with the
medium

heavy quark

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[(U_{[\infty,t]} E_i(t) U_{[t,-\infty]})^{\dagger} \right]$$

$$\times (U_{[\infty,0]} E_i(0) U_{[0,-\infty]}) \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

quark carries color charge and interacts with the medium

heavy quark

Heavy quark and quarkonia correlators a small, yet consequential difference

The heavy quark diffusion coefficient can be defined from the real-time correlator J. Casalderrey-Solana and D. Teaney, hep-ph/0605199; see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

$$\left\langle \operatorname{Tr}_{\operatorname{color}} \left[U(-\infty, t) E_i(t) U(t, 0) E_i(0) U(0, -\infty) \right] \right\rangle_T$$

whereas for quarkonia the relevant quantity is (${f R}_1={f R}_2$ in the preceding discussion)

$$T_F \langle E_i^a(t) \mathcal{W}^{ab}(t,0) E_i^b(0) \rangle_T$$
.

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C_F T_F}{4\pi} \omega^3$$

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C_F T_F}{4\pi} \omega^3$$

The difference is due to different operator orderings (different possible gluon insertions).

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C_F T_F}{4\pi} \omega^3$$

The difference is due to different operator orderings (different possible gluon insertions).

Gauge invariant!

Gauge invariant!

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C_F T_F}{4\pi} \omega^3$$

The difference is due to different operator orderings (different possible gluon insertions).

Quantum color correlations can be important!

However, the QGP is not weakly coupled.

Can we make a comparison at strong coupling? In any theory?

Wilson loops in AdS/CFT setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion:

$$\langle W[\mathscr{C} = \partial \Sigma] \rangle_T = e^{iS_{NG}[\Sigma]}$$

How do Wilson loops help?

setup — pure gauge theory

• Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\left. \frac{\delta}{\delta f^{\mu}(s_{2})} \frac{\delta}{\delta f^{\nu}(s_{1})} W[\mathscr{C}_{f}] \right|_{f=0} = (ig)^{2} \operatorname{Tr}_{\operatorname{color}} \left[U_{[1,s_{2}]} F_{\mu\rho}(\gamma(s_{2})) \dot{\gamma}^{\rho}(s_{2}) U_{[s_{2},s_{1}]} F_{\nu\sigma}(\gamma(s_{1})) \dot{\gamma}^{\sigma}(s_{1}) U_{[s_{1},0]} \right]$$

How do Wilson loops help?

setup — pure gauge theory

• Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\left. \frac{\delta}{\delta f^{\mu}(s_{2})} \frac{\delta}{\delta f^{\nu}(s_{1})} W[\mathscr{C}_{f}] \right|_{f=0} = (ig)^{2} \operatorname{Tr}_{\operatorname{color}} \left[U_{[1,s_{2}]} F_{\mu\rho}(\gamma(s_{2})) \dot{\gamma}^{\rho}(s_{2}) U_{[s_{2},s_{1}]} F_{\nu\sigma}(\gamma(s_{1})) \dot{\gamma}^{\sigma}(s_{1}) U_{[s_{1},0]} \right]$$

Same as the lattice calculation of the heavy quark diffusion coefficient:

Wilson loops in AdS/CFT setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion:

$$\langle W[\mathscr{C} = \partial \Sigma] \rangle_T = e^{iS_{NG}[\Sigma]}$$

Metric of interest for finite T calculations:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left[-f(z) dt^{2} + d\mathbf{x}^{2} + \frac{1}{f(z)} dz^{2} + z^{2} d\Omega_{5}^{2} \right]$$
$$f(z) = 1 - (\pi T z)^{4}$$

$Im\{t\}$ The Schwinger-Keldysh contour

quarkonia and heavy quarks

The Schwinger-Keldysh contour $Im\{t\}$

quarkonia and heavy quarks

- The heavy quark is present at all times:
 - It is part of the construction of the thermal state.
 - The Wilson line, which enforces the Gauss' law constraint due to the point charge, is also present on the Euclidean segment.

The Schwinger-Keldysh contour

quarkonia and heavy quarks

 $Im\{t\}$

Re{*t*}

- In this correlator, the heavy quark pair is present at all times, but it is only color-charged for a finite time:
 - It is not part of the construction of the thermal state.
 - The adjoint Wilson line, representing the propagation of unbound quarkonium (in the adjoint representation), is only present on the real-time segment.

SK contour and Holography

Heavy quark correlator

 $t = t_i - i\beta$

Fluctuations are matched through the imaginary time segment solving the equations of motion \Longrightarrow factors of $e^{\beta\omega}$, KMS relations \downarrow_{7}

Im{ *t* }

Re{*t*}

SK contour and Holography

Heavy quark correlator

Fluctuations are matched through the imaginary time segment solving the equations of motion \Longrightarrow factors of $e^{\beta\omega}$, KMS relations \downarrow_{τ}

$$= t_i$$

$$E_i$$

$$t = t_f$$

$$t = t_i - i\beta$$

From here:
$$\kappa = \pi \sqrt{g^2 N_c T^3}$$

Im{ *t* }

Re{*t*}

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

SK contour and Holography

Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal surface. No direct sensitivity to the imaginary time segment.

Im{*t*}

[Re{*t*}

Comparison of spectral functions

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport at strong coupling in $\mathcal{N}=4$ SYM.
 - Interesting prospects for interpolating between weak & strong coupling.
- Next steps:
 - Generalize the calculations to include a boosted medium.
 - \circ Calculate the chromo-magnetic correlators $\langle B^a(t) \mathcal{W}^{ab}_{[t,0]} B^b(0)
 angle_T$.
 - Use them as input for quarkonia transport codes.
- Stay tuned!

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport at strong coupling in $\mathcal{N}=4$ SYM.
 - Interesting prospects for interpolating between weak & strong coupling.
- Next steps:
 - Generalize the calculations to include a boosted medium.
 - \circ Calculate the chromo-magnetic correlators $\langle B^a(t) \mathcal{W}^{ab}_{[t,0]} B^b(0)
 angle_T$.
 - Use them as input for quarkonia transport codes.
- Stay tuned!

Thank you!

Extra slides

Time scales of quarkonia

Transitions between quarkonium energy levels (the system)

Interaction with the environment

$$\frac{1}{\tau_I} \sim \frac{H_{\text{int}}^2}{T} \sim T \frac{T^2}{(Mv)^2}$$

$$\mathcal{L}_{\text{pNRQCD}} = \mathcal{L}_{\text{light quarks}} + \mathcal{L}_{\text{gluon}} + \int d^3r \text{Tr}_{\text{color}} \left[S^{\dagger} (i\partial_0 - H_s)S + O^{\dagger} (iD_0 - H_o)O \right]$$

$$+V_A(O^{\dagger}\mathbf{r}\cdot g\mathbf{E}S+\text{h.c.})+\frac{V_B}{2}O^{\dagger}\{\mathbf{r}\cdot g\mathbf{E},O\}+\cdots$$

Open quantum systems

"tracing/integrating out" the QGP

• Given an initial density matrix $\rho_{\rm tot}(t=0)$, quarkonium coupled with the QGP evolves as

$$\rho_{\text{tot}}(t) = U(t)\rho_{\text{tot}}(t=0)U^{\dagger}(t).$$

 We will only be interested in describing the evolution of quarkonium and its final state abundances

$$\implies \rho_S(t) = \text{Tr}_{QGP} \left[U(t) \rho_{tot}(t=0) U^{\dagger}(t) \right].$$

• Then, one derives an evolution equation for $ho_S(t)$, assuming that at the initial time we have $ho_{\mathrm{tot}}(t=0)=
ho_S(t=0)\otimes e^{-H_{\mathrm{QGP}}/T}/\mathscr{Z}_{\mathrm{QGP}}$.

Open quantum systems

"tracing/integrating out" the QGP: semi-classic description

Unitary evolution of environment + subsystem

Trace out the environment degrees of freedom

OQS: ρ_{S} has non-unitary, time-irreversible evolution

Markovian approximation \iff weak coupling in H_I

OQS: Lindblad equation

Wigner transform:
$$f(\mathbf{x}, \mathbf{k}, t) \equiv \int_{k'} e^{i\mathbf{k}' \cdot \mathbf{x}} \left\langle \mathbf{k} + \frac{\mathbf{k}'}{2} \middle| \rho_S(t) \middle| \mathbf{k} - \frac{\mathbf{k}'}{2} \middle\rangle$$

Semi-classic subsystem: Boltzmann/Fokker-Planck equation

Lindblad equations for quarkonia at low $T \ll Mv$ quantum Brownian motion limit & quantum optical limit in pNRQCD

 After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$\frac{\partial \rho}{\partial t} = -i[H_{\text{eff}}, \rho] + \sum_{j} \gamma_{j} \left(L_{j} \rho L_{j}^{\dagger} - \frac{1}{2} \left\{ L_{j}^{\dagger} L_{j}, \rho \right\} \right)$$

This can be done in two different limits within pNRQCD:

Quantum Brownian Motion:

Quantum Optical:

$$au_I \gg au_E$$
 $au_S \gg au_E$

$$au_I \gg au_E$$
 see works by $au_I \gg au_S$

relevant for
$$Mv \gg T \gg Mv^2$$

relevant for
$$Mv \gg Mv^2$$
, T

Quantum Brownian Motion limit details

$$\begin{split} \frac{d\rho_{S}(t)}{dt} &= -i \left[H_{S} + \Delta H_{S}, \rho_{S}(t) \right] + \kappa_{\text{adj}} \left(L_{\alpha i} \rho_{S}(t) L_{\alpha i}^{\dagger} - \frac{1}{2} \left\{ L_{\alpha i}^{\dagger} L_{\alpha i}, \rho_{S}(t) \right\} \right) \\ H_{S} &= \frac{\mathbf{p}_{\text{rel}}^{2}}{M} + \begin{pmatrix} -\frac{C_{F}\alpha_{s}}{r} & 0 \\ 0 & \frac{\alpha_{s}}{2N_{c}r} \end{pmatrix}, \qquad \Delta H_{S} &= \frac{\gamma_{\text{adj}}}{2} r^{2} \begin{pmatrix} 1 & 0 \\ 0 & \frac{N_{c}^{2} - 2}{2(N_{c}^{2} - 1)} \end{pmatrix} \\ L_{1i} &= \left(r_{i} + \frac{1}{2MT} \nabla_{i} - \frac{N_{c}}{8T} \frac{\alpha_{s} r_{i}}{r} \right) \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \\ L_{2i} &= \sqrt{\frac{1}{N_{c}^{2} - 1}} \left(r_{i} + \frac{1}{2MT} \nabla_{i} + \frac{N_{c}}{8T} \frac{\alpha_{s} r_{i}}{r} \right) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ L_{3i} &= \sqrt{\frac{N_{c}^{2} - 4}{2(N_{c}^{2} - 1)}} \left(r_{i} + \frac{1}{2MT} \nabla_{i} \right) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

Heavy quark and quarkonia correlators

a small, yet consequential difference

A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

What we just found, and had been noticed even earlier by Eller, Ghiglieri and Moore, is simply stating that:

They compared M. Eidemuller and M. Jamin, hep-ph/9709419 with Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$T_F \left\langle E_i^a(t) \mathcal{W}^{ab}(t,0) E_i^b(0) \right\rangle_T \neq \left\langle \operatorname{Tr}_{\operatorname{color}} \left[U(-\infty,t) E_i(t) U(t,0) E_i(0) U(0,-\infty) \right] \right\rangle_T$$

$$\langle n | F_{0i}(t) \rangle$$
 $\langle n | F_{0i}(0) \rangle$

- This finding presents a puzzle:
 - $^{\circ}$ Let's say we were able to set axial gauge $A_0=0$.
 - o Then, the two correlation functions would look the same:

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\operatorname{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T.$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

- This finding presents a puzzle:
 - $^{\circ}$ Let's say we were able to set axial gauge $A_0=0$.
 - Orrelation functions would look the same:

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\operatorname{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T.$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

Unlikely: we verified this independently

- This finding presents a puzzle:
 - $^{\circ}$ Let's say we were able to set axial gauge $A_0=0$.
 - o Then, the two correlation functions would look the same:

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\operatorname{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T.$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

Unlikely: we verified this independently

False: both definitions are explicitly invariant

- This finding presents a puzzle:
 - $^{\circ}$ Let's say we were able to set axial gauge $A_0=0$. \Longrightarrow The problem is here
 - Then, the two correlation functions would look the same:

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\operatorname{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T.$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

Unlikely: we verified this independently

False: both definitions are explicitly invariant

• This finding presents a puzzle:

We verified that this difference between the correlators is gauge invariant using an interpolating gauge condition:

$$G_M^a[A] = \frac{1}{\lambda} A_0^a(x) + \partial^\mu A_\mu^a(x)$$

- O Let's say we were able to set axial gauge $A_0 = 0$. \Longrightarrow The problem is here
- Then, the two correlation functions would look the same:

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\operatorname{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T.$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

Unlikely: we verified this independently

False: both definitions are explicitly invariant

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\rm BPS}[\mathscr{C}; \hat{n}] = \frac{1}{N_c} \mathrm{Tr}_{\rm color} \left[\mathscr{P} \exp \left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_{\mu} \dot{x}^{\mu} + \hat{n}(s) \cdot \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \right] \right) \right],$$

which is not the standard Wilson loop.

Wilson loops in $\mathcal{N} = 4$ SYM

a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\rm BPS}[\mathscr{C}; \hat{n}] = \frac{1}{N_c} \mathrm{Tr}_{\rm color} \left[\mathscr{P} \exp \left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_{\mu} \dot{x}^{\mu} + \hat{n}(s) \cdot \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \right] \right) \right],$$

which is not the standard Wilson loop.

• $\mathcal{N}=4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through a direction $\hat{n}\in\mathbb{S}_5$. Also, its dual gravitational description is $\mathrm{AdS}_5\times\mathbb{S}_5$.

Wilson loops in $\mathcal{N} = 4$ SYM

a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\rm BPS}[\mathscr{C}; \hat{n}] = \frac{1}{N_c} \mathrm{Tr}_{\rm color} \left[\mathscr{P} \exp \left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_{\mu} \dot{x}^{\mu} + \hat{n}(s) \cdot \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \right] \right) \right],$$

which is not the standard Wilson loop.

- $\mathcal{N}=4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through a direction $\hat{n}\in\mathbb{S}_5$. Also, its dual gravitational description is $\mathrm{AdS}_5\times\mathbb{S}_5$.
- What to do with this extra parameter? For a single heavy quark, just set $\hat{n}=\hat{n}_0$.

Choosing \hat{n} what is the best proxy for an adjoint Wilson line?

A key property of the adjoint Wilson line is

$$\mathcal{W}_{[t_2,t_1]}^{ab} = \frac{1}{T_F} \operatorname{Tr} \left[\mathcal{T} \{ T^a U_{[t_2,t_1]} T^b U_{[t_2,t_1]}^{\dagger} \} \right],$$

which means that we can obtain the correlator we want by studying deformations of a Wilson loop of the form $W = \frac{1}{N_c} {\rm Tr} \big[U U^\dagger \big] = 1.$

• This leads us to consider the following loop:

$$\hat{n} = \hat{n}_0$$

$$\hat{n} = -\hat{n}_0$$

How the calculation proceeds

what equations do we need to solve?

• The classical, unperturbed equations of motion from the Nambu-Goto action to determine Σ :

$$S_{\text{NG}} = -\frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{-\det\left(g_{\mu\nu}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}\right)} .$$

• The classical, linearized equation of motion with perturbations in order to be able to calculate derivatives of $\langle W[\mathscr{C}_f] \rangle_T = e^{iS_{\rm NG}[\Sigma_f]}$:

$$S_{\text{NG}}[\Sigma_f] = S_{\text{NG}}[\Sigma] + \int dt_1 dt_2 \frac{\delta^2 S_{\text{NG}}[\Sigma_f]}{\delta f(t_1) \delta f(t_2)} \left| f(t_1) f(t_2) + O(f^3) \right|_{f=0}$$

• In practice, the equations are only numerically stable in Euclidean signature, so we have to solve them and analytically continue back.

QGP chromoelectric correlators

for quarkonia transport

$$[g_E^{--}]_{i_2i_1}^{>}(t_2,t_1,\mathbf{R}_2,\mathbf{R}_1) = \langle (\mathcal{W}_{2'}E_{i_2}(\mathbf{R}_2,t_2))^a (E_{i_1}(\mathbf{R}_1,t_1)\mathcal{W}_{1'})^a \rangle_T$$

The spectral function of quarkonia symmetries and KMS relations

The KMS conjugates of the previous correlators are such that

$$[g_E^{++}]_{ji}^{>}(q) = e^{q^0/T}[g_E^{++}]_{ji}^{<}(q) , \quad [g_E^{--}]_{ji}^{>}(q) = e^{q^0/T}[g_E^{--}]_{ji}^{<}(q) ,$$

and one can show that they are related by

$$[g_E^{++}]_{ji}^{>}(q) = [g_E^{--}]_{ji}^{<}(-q), \quad [g_E^{--}]_{ji}^{>}(q) = [g_E^{++}]_{ji}^{<}(-q).$$

The spectral functions $[\rho_E^{++/--}]_{ji}(q) = [g_E^{++/--}]_{ji}^{>}(q) - [g_E^{++/--}]_{ji}^{<}(q)$ are not necessarily odd under $q \leftrightarrow -q$. However, they do satisfy:

$$[\rho_E^{++}]_{ji}(q) = -[\rho_E^{--}]_{ji}(-q).$$